629 research outputs found

    The Homflypt skein module of a connected sum of 3-manifolds

    Full text link
    If M is an oriented 3-manifold, let S(M) denote the Homflypt skein module of M. We show that S(M_1 connect sum M_2) is isomorphic to S(M_1) tensor S(M_2) modulo torsion. In fact, we show that S(M_1 connect sum M_2) is isomorphic to S(M_1) tensot S(M_2) if we are working over a certain localized ring. We show the similar result holds for relative skein modules. If M contains a separating 2-sphere, we give conditions under which certain relative skein modules of M vanish over specified localized rings.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol1/agt-1-31.abs.htm

    National slowdown hits Texas

    Get PDF
    Petroleum industry and trade

    A study of beryllium and beryllium-lithium complexes in single crystal silicon

    Get PDF
    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed

    Microstructure and velocity of field-driven solid-on-solid interfaces moving under stochastic dynamics with local energy barriers

    Full text link
    We study the microscopic structure and the stationary propagation velocity of (1+1)-dimensional solid-on-solid interfaces in an Ising lattice-gas model, which are driven far from equilibrium by an applied force, such as a magnetic field or a difference in (electro)chemical potential. We use an analytic nonlinear-response approximation [P.A. Rikvold and M. Kolesik, J. Stat. Phys. 100, 377 (2000)] together with kinetic Monte Carlo simulations. Here we consider interfaces that move under Arrhenius dynamics, which include a microscopic energy barrier between the allowed Ising/lattice-gas states. Two different dynamics are studied: the standard one-step dynamic (OSD) [H.C. Kang and W. Weinberg, J. Chem. Phys. 90, 2824 (1992)] and the two-step transition-dynamics approximation (TDA) [T. Ala-Nissila, J. Kjoll, and S.C. Ying, Phys. Rev. B 46, 846 (1992)]. In the OSD the effects of the applied force and the interaction energies in the model factorize in the transition rates (a soft dynamic), while in the TDA such factorization is not possible (a hard dynamic). In full agreement with previous general theoretical results we find that the local interface width under the TDA increases dramatically with the applied force. In contrast, the interface structure with the OSD is only weakly influenced by the force, in qualitative agreement with the theoretical expectations. Results are also obtained for the force-dependence and anisotropy of the interface velocity, which also show differences in good agreement with the theoretical expectations for the differences between soft and hard dynamics. Our results confirm that different stochastic interface dynamics that all obey detailed balance and the same conservation laws nevertheless can lead to radically different interface responses to an applied force.Comment: 18 pages RevTex. Minor revisions. Phys. Rev. B, in pres
    corecore