26 research outputs found

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Ultrasonic Estimation of Carcass Yield in Turkey Broilers

    No full text

    Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis

    No full text
    Signature-tagged mutagenesis (STM) was used to identify genetic determinants of fitness associated with two key ecological processes mediated by bacteria. Burkholderia vietnamiensis strain G4 was used as a model bacterium to investigate: phenol degradation as a model of bioremediation, and pea rhizosphere colonization as a prerequisite to biological control and phytoremediation. A total of 1900 mutants were screened and 196 putative fitness mutants identified; the genetic basis of 137 of these mutations was determined by correlation to the G4 genome. The phenol-STM screen was more successful at identifying phenol degradation mutations (83 mutants; 4.4% hit rate) than a conventional agar-based phenol screen (49 mutants, 5319 screened, 0.92% hit rate). The combination of both screens completely defined the components of the TOM pathway in strain G4 and also identified novel accessory genes not previously implicated in phenol utilization. The rhizosphere-STM screen identified 113 mutants (5.9% hit rate); 107 had reduced tag signals indicative of poor rhizosphere colonization (Rhiz-), while six mutants produced high hybridization signals suggesting increased rhizosphere competence (Rhiz+). Competition assays confirmed that 69% of Rhiz- mutants tested (24/35) were severely compromised in their rhizosphere fitness. Seventy Rhiz- mutations mapped to genes with the following putative functions: amino acid biosynthesis (25; 36%), general metabolism (18; 26%), hypothetical (9; 13%), regulatory genes (4; 5.7%), transport and stress (2 each; 2.8% respectively). One of the most interesting discoveries mediated by the rhizosphere-STM screen was the identification of three Rhiz+ mutants inactivated within a single virulence-associated autotransporter adhesin gene; this mutation consistently produced a hyper-colonization phenotype suggesting a highly novel role for this surface adhesin during plant interactions. Our study has shown that STM can be successfully applied to ecologically important microbial interactions, defining the underlying genetic systems important for biotechnological fitness of environmental bacteria such those from the Burkholderia cepacia complex
    corecore