32 research outputs found

    Heterogeneous X inactivation in trophoblastic cells of human full-term female placentas

    Get PDF
    In female mammalian cells, one of the two X chromosomes is inactivated to compensate for gene-dose effects, which would be otherwise doubled compared with that in male cells. In somatic lineages in mice, the inactive X chromosome can be of either paternal or maternal origin, whereas the paternal X chromosome is specifically inactivated in placental tissue. In human somatic cells, X inactivation is mainly random, but both random and preferential paternal X inactivation have been reported in placental tissue. To shed more light on this issue, we used PCR to study the methylation status of the polymorphic androgen-receptor gene in full-term human female placentas. The sites investigated are specifically methylated on the inactive X chromosome. No methylation was found in microdissected stromal tissue, whether from placenta or umbilical cord. Of nine placentas for which two closely apposed samples were studied, X inactivation was preferentially maternal in three, was preferentially paternal in one, and was heterogeneous in the remaining five. Detailed investigation of two additional placentas demonstrated regions with balanced (1:1 ratio) preferentially maternal and preferentially paternal X inactivation. No differences in ratio were observed in samples microdissected to separate trophoblast and stromal tissues. We conclude that methylation of the androgen receptor in human full-term placenta is specific for trophoblastic cells and that the X chromosome can be of either paternal or maternal origin

    DICER1 RNase IIIb domain mutations are infrequent in testicular germ cell tumours

    Get PDF
    Background: Testicular Germ Cell Tumours (TGCT) are the most frequently occurring malignancy in males from 15-45 years of age. They are derived from germ cells unable to undergo physiological maturation, although the genetic basis for this is poorly understood. A recent report showed that mutations in the RNase IIIb domain of DICER1, a micro-RNA (miRNA) processing enzyme, are common in non-epithelial ovarian cancers. DICER1 mutations were found in 60% of Sertoli-Leydig cell tumours, clustering in four codons encoding metal-binding sites. Additional analysis of 14 TGCT DNA samples identified one case that also contained a mutation at one of these sites. Findings. A number of previous studies have shown that DICER1 mutations are found in Q) within the RNase IIIb domain in one TGCT sample, which was predicted to disturb DICER1 function. Conclusion: Overall our findings suggest a mutation frequency in TGCTs of ∼1%. We conclude therefore that hot-spot mutations, frequently seen in Sertoli-Leydig cell tumours, are not common in TGCTs

    Human Germ Cell Tumors are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic

    Get PDF
    Current (high throughput omics-based) data support the model that human (malignant) germ cell tumors are not initiated by somatic mutations, but, instead through a defined locked epigenetic status, representative of their cell of origin. This elegantly explains the role of both genetic susceptibility as well as environmental factors in the pathogenesis, referred to as ‘genvironment’. Moreover, it could also explain various epidemiological findings, including the rising incidence of this type of cancer in Western societies. In addition, it allows for identification of clinically relevant and informative biomarkers both for diagnosis and follow-up of individual patients. The current status of these findings will be discussed, including the use of high throughput DNA methylation profiling for determination of differentially methylated regions (DMRs) as well as chromosomal copy number variation (CNV). Finally, the potential value of methylation-specific tumor DNA fragments (i.e., XIST promotor) as well as embryonic microRNAs as molecular biomarkers for cancer detection in liquid biopsies will be presented

    Human Germ Cell Tumors are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic

    Get PDF
    Current (high throughput omics-based) data support the model that human (malignant) germ cell tumors are not initiated by somatic mutations, but, instead through a defined locked epigenetic status, representative of their cell of origin. This elegantly explains the role of both genetic susceptibility as well as environmental factors in the pathogenesis, referred to as ‘genvironment’. Moreover, it could also explain various epidemiological findings, including the rising incidence of this type of cancer in Western societies. In addition, it allows for identification of clinically relevant and informative biomarkers both for diagnosis and follow-up of individual patients. The current status of these findings will be discussed, including the use of high throughput DNA methylation profiling for determination of differentially methylated regions (DMRs) as well as chromosomal copy number variation (CNV). Finally, the potential value of methylation-specific tumor DN

    Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors

    Get PDF
    Type II germ cell tumors arise after puberty from a germ cell that was incorrectly programmed during fetal life. Failure of testicular germ cells to properly differentiate can lead to the formation of germ cell neoplasia in situ of the testis; this precursor cell invariably gives rise to germ cell cancer after puberty. The Nodal co-receptor Cripto is expressed transiently during normal germ cell development and is ectopically expressed in non-seminomas that arise from germ cell neoplasia in situ, suggesting that its aberrant expression may underlie germ cell dysregulation and hence germ cell cancer. Here we investigated methylation of the Cripto promoter in mouse germ cells and human germ cell cancer and correlated this with the level of CRIPTO protein expression. We found hypomethylation of the CRIPTO promoter in undifferentiated fetal germ cells, embryonal carcinoma and seminomas, but hypermethylation in differentiated fetal germ cells and the differentiated types of non-seminomas. CRIPTO protein was strongly expressed in germ cell neoplasia in situ along with embryonal carcinoma, yolk sac tumor and seminomas. Further, cleaved CRIPTO was detected in media from seminoma and embryonal carcinoma cell lines, suggesting that cleaved CRIPTO may provide diagnostic indication of germ cell cancer. Accordingly, CRIPTO was detectable in serum from 6/15 patients with embryonal carcinoma, 5/15 patients with seminoma, 4/5 patients with germ cell neoplasia in situ cells only and in 1/15 control patients. These findings suggest that CRIPTO expression may be a useful serological marker for diagnostic and/or prognostic purposes during germ cell cancer management

    Coamplification of DAD-R, SOX5, and EKI1 in human testicular seminomas, with specific overexpression of DAD-R, correlates with reduced levels of apoptosis and earlier clinical manifestation

    Get PDF
    Seminomas and nonseminomas represent the invasive stages of testicular (TGCTs) of adolescents and adults. Although TGCTs are characterized by extra copies of the short arm of chromosome 12, the genetic basis for gain of 12p in the pathogenesis of this cancer is not yet understood. We have demonstrated that gain of 12p is related to invasive growth and that amplification of specific 12p sequences, i.e., 12p11.2-p12.1, correlates with reduced apoptosis in the tumors. Here we show that three known genes map within the newly determined shortest region of overlap of amplification (SROA): DAD-R, SOX5, and EKI1. Whereas EKI1 maps close to the telomeric region of the SROA, DAD-R is the first gene at the centromeric region within the 12p amplicon. Although all three genes are amplified to the same level within the SROA, expression of DAD-R is significantly up-regulated in seminomas with the restricted 12p amplification compared with seminomas without this amplicon. DAD-R is also highly expressed in nonseminomas of various histologies and derived cell lines, both lacking such amplification. This finding is of particular interest because seminomas with the restricted 12p amplification and nonseminomas are manifested clinically in the third decade of life and show a low degree of apoptosis. In contrast, seminomas lacking a restricted 12p amplification, showing significantly lower levels of DAD-R with pronounced apoptosis, manifest clinically in the fourth decade of life. A low level of DAD-R expression is also observed in normal testicular parenchyma and in parenchyma containing the precursor cells of this cancer, i.e., carcinoma in situ. Therefore, elevated DAD-R expression in seminomas and nonseminomas correlates with invasive growth and a reduced level of apoptosis associated with an earlier clinical presentation. These data implicate DAD-R as a candidate gene responsible in part for the pathological effects resulting from gain of 12p sequences in TGCTs. In addition, our results also imply differences in expression regulation of DAD-R between seminomas and nonseminomas

    Prediction of relapse in stage I testicular germ cell tumor patients on surveillance: investigation of biomarkers

    Get PDF
    BACKGROUND: Better biomarkers for assessing risk of relapse in stage I testicular germ cell tumor patients are needed, to complement classical histopathological variables. We aimed to assess the prognostic value of previously suggested biomarkers, rel

    Critical function of AP-2gamma/TCFAP2C in mouse embryonic germ cell maintenance

    Get PDF
    Formation of the germ cell lineage involves multiple processes, including repression of somatic differentiation and reacquisition of pluripotency as well as a unique epigenetic constitution. The transcriptional regulator Prdm1 has been identified as a main coordinator of this process, controlling epigenetic modification and gene expression. Here we report on the expression pattern of the transcription factor Tcfap2c, a putative downstream target of Prdm1, during normal mouse embryogenesis and the consequences of its specific loss in primordial germ cells (PGCs) and their derivatives. Tcfap2c is expressed in PGCs from Embryonic Day 7.25 (E 7.25) up to E 12.5, and targeted disruption resulted in sterile animals, both male and female. In the mutant animals, PGCs were specified but were lost around E 8.0. PGCs generated in vitro from embryonic stem cells lacking TCFAP2C displayed induction of Prdm1 and Dppa3. Upregulation of Hoxa1, Hoxb1, and T together with lack of expression of germ cell markers such Nanos3, Dazl, and Mutyh suggested that the somatic gene program is induced in TCFAP2C-deficient PGCs. Repression of TCFAP2C in TCam-2, a human PGC-resembling seminoma cell line, resulted in specific upregulation of HOXA1, HOXB1, MYOD1, and HAND1, indicative of mesodermal differentiation. Expression of genes indicative of ectodermal, endodermal, or extraembryonic differentiation, as well as the finding of no change to epigenetic modifications, suggested control by other factors. Our results implicate Tcfap2c as an important effector of Prdml activity that is required for PGC maintenance, most likely mediating Prdm1-induced suppression of mesodermal differentiation

    Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis

    Get PDF
    Human testicular germ-cell tumors of young adults (TGCTs), both seminomas and nonseminomas, are characterized by 12p overrepresentation, mostly as isochromosomes, of which the biological and clinical significance is still unclear. A limited number of TGCTs has been identified with an additional high-level amplification of a restricted region of 12p including the K-RAS proto-oncogene. Here we show that the incidence of these restricted 12p amplifications is approximately 8% in primary TGCTs. Within a single cell formation of i(12p) and restricted 12p amplification is mutually exclusive. The borders of the amplicons cluster in short regions, and the amplicon was never found in the adjacent carcinoma in situ cells. Seminomas with the restricted 12p amplification virtually lacked apoptosis and the tumor cells showed prolonged in vitro survival like seminoma cells with a mutated RAS gene. However, no differences in proliferation index between these different groups of seminomas were found. Although patients with a seminoma containing a homogeneous restricted 12p amplification presented at a significantly younger age than those lacking it, the presence of a restricted 12p amplification/RAS mutation did not predict the stage of the disease at clinical presentation and the treatment response of primary seminomas. In 55 primary and metastatic tumors from 44 different patients who failed cisplatinum-based chemotherapy, the restricted 12p amplification and RAS mutations had the same incidence a

    Whole-genome sequencing of spermatocytic tumors provides insights into the mutational processes operating in the male germline

    Get PDF
    Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover, spermatogonia very rarely form tumors, so-called spermatocytic tumors (SpT). In line with the previous identification of FGFR3 and HRAS selfish mutations in a subset of cases, candidate gene screening of 29 SpTs identified an oncogenic NRAS mutation in two cases. To gain insights in the etiology of SpT and into properties of the male germline, we performed whole-genome sequencing of five tumors (4/5 with matched normal tissue). The acquired single nucleotide variant load was extremely low (~0.2 per Mb), with an average of 6 (2±9) no
    corecore