3 research outputs found

    Assessing the performance of a serological point-of-care test in measuring detectable antibodies against SARS-CoV-2

    Get PDF
    This study investigated the performance of a rapid point-of-care antibody test, the BioMedomics COVID-19 IgM/IgG Rapid Test, in comparison with a high-quality, validated, laboratory-based platform, the Roche Elecsys Anti-SARS-CoV-2 assay. Serological testing was conducted on 709 individuals. Concordance metrics were estimated. Logistic regression was used to assess associations with seropositivity. SARS-CoV-2 seroprevalence was 63.5% (450/709; 95% CI 59.8%-67.0%) using the BioMedomics assay and 71.9% (510/709; 95% CI 68.5%-75.2%) using the Elecsys assay. There were 60 discordant results between the two assays, all of which were seropositive in the Elecsys assay, but seronegative in the BioMedomics assay. Overall, positive, and negative percent agreements between the two assays were 91.5% (95% CI 89.2%-93.5%), 88.2% (95% CI 85.1%-90.9%), and 100% (95% CI 98.2%-100%), respectively, with a Cohen’s kappa of 0.81 (95% CI 0.78–0.84). Excluding specimens with lower (Elecsys) antibody titers, the agreement improved with overall, positive, and negative percent concordance of 94.4% (95% CI 92.3%-96.1%), 91.8% (95% CI 88.8%-94.3%), and 100% (95% CI 98.2%-100%), respectively, and a Cohen’s kappa of 0.88 (95% CI 0.85–0.90). Logistic regression confirmed better agreement with higher antibody titers. The BioMedomics COVID-19 IgM/IgG Rapid Test demonstrated good performance in measuring detectable antibodies against SARS-CoV-2, supporting the utility of such rapid point-of-care serological testing to guide the public health responses and vaccine prioritization. © 2022 Coyle et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    SARS-CoV-2 seroprevalence in the urban population of Qatar: An analysis of antibody testing on a sample of 112,941 individuals

    Get PDF
    ABSTRACTBackgroundQatar has experienced a large SARS-CoV-2 epidemic. Our first objective was to assess the proportion of the urban population that has been infected with SARS-CoV-2, by measuring the prevalence of detectable antibodies. Our second objective was to identify predictors for infection and for having higher antibody titers.MethodsResidual blood specimens from individuals receiving routine and other clinical care between May 12-September 9, 2020 were tested for anti-SARS-CoV-2 antibodies. Associations with seropositivity and higher antibody titers were identified through regression analyses. Probability weights were applied in deriving the epidemiological measures.ResultsWe tested 112,941 individuals (∼10% of Qatar’s urban population), of whom 51.6% were men and 66.0% were 20-49 years of age. Seropositivity was 13.3% (95% CI: 13.1-13.6%) and was significantly associated with sex, age, nationality, clinical-care type, and testing date. The proportion with higher antibody titers varied by age, nationality, clinical-care type, and testing date. There was a strong correlation between higher antibody titers and seroprevalence in each nationality, with a Pearson correlation coefficient of 0.85 (95% CI: 0.47-0.96), suggesting that higher antibody titers may indicate repeated exposure to the virus. The percentage of antibody-positive persons with prior PCR-confirmed diagnosis was 47.1% (95% CI: 46.1-48.2%), severity rate was 3.9% (95% CI: 3.7-4.2%), criticality rate was 1.3% (95% CI: 1.1-1.4%), and fatality rate was 0.3% (95% CI: 0.2-0.3%).ConclusionsFewer than two in every 10 individuals in Qatar’s urban population had detectable antibodies against SARS-CoV-2 between May 12-September 9, 2020, suggesting that this population is still far from the herd immunity threshold and at risk from a subsequent epidemic wave.</jats:sec

    Assessing the performance of a serological point-of-care test in measuring detectable antibodies against SARS-CoV-2

    No full text
    This study investigated the performance of a rapid point-of-care antibody test, the BioMedomics COVID-19 IgM/IgG Rapid Test, in comparison with a high-quality, validated, laboratory-based platform, the Roche Elecsys Anti-SARS-CoV-2 assay. Serological testing was conducted on 709 individuals. Concordance metrics were estimated. Logistic regression was used to assess associations with seropositivity. SARS-CoV-2 seroprevalence was 63.5% (450/709; 95% CI 59.8%-67.0%) using the BioMedomics assay and 71.9% (510/709; 95% CI 68.5%-75.2%) using the Elecsys assay. There were 60 discordant results between the two assays, all of which were seropositive in the Elecsys assay, but seronegative in the BioMedomics assay. Overall, positive, and negative percent agreements between the two assays were 91.5% (95% CI 89.2%-93.5%), 88.2% (95% CI 85.1%-90.9%), and 100% (95% CI 98.2%-100%), respectively, with a Cohen’s kappa of 0.81 (95% CI 0.78–0.84). Excluding specimens with lower (Elecsys) antibody titers, the agreement improved with overall, positive, and negative percent concordance of 94.4% (95% CI 92.3%-96.1%), 91.8% (95% CI 88.8%-94.3%), and 100% (95% CI 98.2%-100%), respectively, and a Cohen’s kappa of 0.88 (95% CI 0.85–0.90). Logistic regression confirmed better agreement with higher antibody titers. The BioMedomics COVID-19 IgM/IgG Rapid Test demonstrated good performance in measuring detectable antibodies against SARS-CoV-2, supporting the utility of such rapid point-of-care serological testing to guide the public health responses and vaccine prioritization
    corecore