28 research outputs found

    Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders

    Get PDF
    Familias de genes; Trastornos del desarrollo neurológico; HnRNPsFamílies genètiques; Trastorns del desenvolupament neurològic; HnRNPsGene families; Neurodevelopmental disorders; HnRNPsBackground With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype–phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. Methods We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. Results We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188–221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. Conclusions Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.This work was supported, in part, by the U.S. National Institutes of Health (R01MH101221) to E.E.E. Research reported in this publication was supported, in part, by the National Institute of Neurological Disorders and Stroke (NINDS) under award number K08NS092898, Jordan’s Guardian Angels, and the Brotman Baty Institute (to G.M.M.). M.I., A.C., and A.S. were supported by the G.E.N.E. (Genomic analysis Evaluation Network) Research Project founded by Progetti di Innovazione in Ambito Sanitario e Socio Sanitario (Bando EX decreto n.2713 28.02.2018) Regione Lombardia. D. L was supported by the German Research Foundation (DFG; LE 4223/1). B.B.A.d.V. and L.E.L.M.V. were supported by grants from the Dutch Organization for Health Research and Development (ZON-MW grants 917–86–319 and 912–12–109). M.E., O.G., and C.R. received funding from the Italian Ministry of Health (Project RC n. 2757328). I.T. is supported by generous donors to the Children’s Mercy Research Institute and the Genomic Answers for Kids program. K.X. is supported by the National Natural Science Foundation of China (NSFC: 8173000779) and the Science and Technology Major Project of Hunan Provincial Science and Technology Department (2018SK1030). M.A.G. was supported by the U.S. National Institutes of Health (T32HG000035). E.E.E. is an investigator of the Howard Hughes Medical Institute

    Dominant-negative variant in SLC1A4 causes an autosomal dominant epilepsy syndrome.

    Get PDF
    SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine

    Estimating the Prevalence of De Novo Monogenic Neurodevelopmental Disorders from Large Cohort Studies

    No full text
    Rare diseases impact up to 400 million individuals globally. Of the thousands of known rare diseases, many are rare neurodevelopmental disorders (RNDDs) impacting children. RNDDs have proven to be difficult to assess epidemiologically for several reasons. The rarity of them makes it difficult to observe them in the population, there is clinical overlap among many disorders, making it difficult to assess the prevalence without genetic testing, and data have yet to be available to have accurate counts of cases. Here, we utilized large sequencing cohorts of individuals with rare, de novo monogenic disorders to estimate the prevalence of variation in over 11,000 genes among cohorts with developmental delay, autism spectrum disorder, and/or epilepsy. We found that the prevalence of many RNDDs is positively correlated to the previously estimated incidence. We identified the most often mutated genes among neurodevelopmental disorders broadly, as well as developmental delay and autism spectrum disorder independently. Finally, we assessed if social media group member numbers may be a valuable way to estimate prevalence. These data are critical for individuals and families impacted by these RNDDs, clinicians and geneticists in their understanding of how common diseases are, and for researchers to potentially prioritize research into particular genes or gene sets

    Estimating the Prevalence of De Novo Monogenic Neurodevelopmental Disorders from Large Cohort Studies

    No full text
    Rare diseases impact up to 400 million individuals globally. Of the thousands of known rare diseases, many are rare neurodevelopmental disorders (RNDDs) impacting children. RNDDs have proven to be difficult to assess epidemiologically for several reasons. The rarity of them makes it difficult to observe them in the population, there is clinical overlap among many disorders, making it difficult to assess the prevalence without genetic testing, and data have yet to be available to have accurate counts of cases. Here, we utilized large sequencing cohorts of individuals with rare, de novo monogenic disorders to estimate the prevalence of variation in over 11,000 genes among cohorts with developmental delay, autism spectrum disorder, and/or epilepsy. We found that the prevalence of many RNDDs is positively correlated to the previously estimated incidence. We identified the most often mutated genes among neurodevelopmental disorders broadly, as well as developmental delay and autism spectrum disorder independently. Finally, we assessed if social media group member numbers may be a valuable way to estimate prevalence. These data are critical for individuals and families impacted by these RNDDs, clinicians and geneticists in their understanding of how common diseases are, and for researchers to potentially prioritize research into particular genes or gene sets

    CHRNA7 copy number gains are enriched in adolescents with major depressive and anxiety disorders

    No full text
    Objective: Neuronal nicotinic acetylcholine receptors (nAChRs), specifically the alpha 7 nAChR encoded by the gene CHRNA7, have been implicated in behavior regulation in animal models. In humans, copy number variants (CNVs) of CHRNA7 are found in a range of neuropsychiatric disorders, including mood and anxiety disorders. Here, we aimed to determine the prevalence of CHRNA7 CNVs among adolescents and young adults with major depressive disorder (MDD) and anxiety disorders. Methods: Twelve to 21 year-old participants with MDD and/or anxiety disorders (34% males, mean +/- std age: 18.9 +/- 1.8 years) were assessed for CHRNA7 copy number state using droplet digital PCR (ddPCR) and genomic quantitative PCR (qPCR). Demographic, anthropometric, and clinical data, including the Beck Anxiety Index (BAI), Beck Depression Inventory (BDI), and the Inventory of Depressive Symptoms (IDS) were collected and compared across individuals with and without a CHRNA7 CNV. Results: Of 205 individuals, five (2.4%) were found to carry a CHRNA7 gain, significantly higher than the general population. No CHRNA7 deletions were identified. Clinically, the individuals carrying CHRNA7 duplications did not differ significantly from copy neutral individuals with MDD and/or anxiety disorders. Conclusions: CHRNA7 gains are relatively prevalent among young individuals with MDD and anxiety disorders (odds ratio = 4.032) without apparent distinguishing clinical features. Future studies should examine the therapeutic potential of a7 nAChR targeting drugs to ameliorate depressive and anxiety disorders

    An estimation of the prevalence of genomic disorders using chromosomal microarray data

    No full text
    Multiple genomic disorders result from recurrent deletions or duplications between low copy repeat (LCR) clusters, mediated by nonallelic homologous recombination. These copy number variants (CNVs) often exhibit variable expressivity and/or incomplete penetrance. However, the population prevalence of many genomic disorders has not been estimated accurately. A subset of genomic disorders similarly characterized by CNVs between LCRs have been studied epidemiologically, including Williams-Beuren syndrome (7q11.23), Smith-Magenis syndrome (17p11.2), velocardiofacial syndrome (22q11.21), Prader-Willi/Angelman syndromes (15q11.2q12), 17q12 deletion syndrome, and Charcot-MarieTooth neuropathy type 1/hereditary neuropathy with liability to pressure palsy (PMP22, 17q11.2). We have generated a method to estimate prevalence of highly penetrant genomic disorders by (1) leveraging epidemiological data for genomic disorders with previously reported prevalence estimates, (2) obtaining chromosomal microarray data on genomic disorders from a large medical genetics clinic; and (3) utilizing these in a linear regression model to determine the prevalence of this syndromic copy number change among the general population. Using our algorithm, the prevalence for five clinically relevant recurrent genomic disorders: 1q21.1 microdeletion (1/6882 live births) and microduplication syndromes (1/6309), 15q13.3 microdeletion syndrome (1/5525), and 16p11.2 microdeletion (1/3021) and microduplication syndromes (1/4216), were determined. These findings will inform epidemiological strategies for evaluating those conditions, and our method may be useful to evaluate the prevalence of other highly penetrant genomic disorders

    Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders

    No full text
    Most genetic studies consider autism spectrum disorder (ASD) and developmental disorder (DD) separately despite overwhelming comorbidity and shared genetic etiology. Here, we analyzed de novo variants (DNVs) from 15,560 ASD (6,557 from SPARK) and 31,052 DD trios independently and also combined as broader neurodevelopmental disorders (NDDs) using three models. We identify 615 NDD candidate genes (false discovery rate [FDR] < 0.05) supported by ≥1 models, including 138 reaching Bonferroni exome-wide significance ( < 3.64e-7) in all models. The genes group into five functional networks associating with different brain developmental lineages based on single-cell nuclei transcriptomic data. We find no evidence for ASD-specific genes in contrast to 18 genes significantly enriched for DD. There are 53 genes that show mutational bias, including enrichments for missense ( = 41) or truncating ( = 12) DNVs. We also find 10 genes with evidence of male- or female-bias enrichment, including 4 X chromosome genes with significant female burden ( , , , and . This large-scale integrative analysis identifies candidates and functional subsets of NDD genes
    corecore