1,382 research outputs found

    Work in Progress: Transformational Change in a Masters-level Integrated Capstone Design Course that Partners Industry and Academia

    Get PDF
    Integrated capstone design courses in civil engineering pose a major challenge for educators because of the breadth of topics covered. Partnering with industry has historically provided a way to alleviate some of these challenges and provide a more authentic design experience. While external partnership in capstone design courses can provide added authenticity as well as fringe benefits such as networking opportunities, there are risks associated with an industry-driven approach. We also argue there is a need to shift from an emphasis on product to pedagogy in capstone design and that authenticity from industry is not an end in itself. In this work-in-progress paper, we present our project to reimagine the integrated capstone design course at a large, public research university in the United Kingdom. This project has three major goals: (1) Develop an understanding of how to balance industry involvement; (2) Generate mechanisms for sustainable adoption of changes; and (3) Evaluate short- and long-term student outcomes for the course. We will present an overview of our intended curricular changes as well as research and evaluation plans to date. This project fits uniquely in the current literature on engineering design education in that it centers around a masters-level course and challenges the notion of what constitutes healthy industry partnership. As a starting point, our first research question considers how the current capstone design course came to be a primarily outsourced effort and what factors impacted this organizational shift to lower academic ownership from within the department

    Soybean seed protein, oil, fatty acids, and mineral composition as influenced by soybean-corn rotation

    Get PDF
    Effects of crop rotation on soybean (Glycine max (L) Merr.) seed composition have not been well investigated. Therefore, the objective of this study was to investigate the effects of soybean-corn (Zea mays L.) rotations on seed protein, oil, and fatty acids composition on soybean. Soybeans were grown at Stoneville, MS, from 2005 to 2008 in five different scheduled cropping sequences. In 2007, following three years of rotation with corn, seed oleic acid percentage was significantly higher in any crop rotation than continuous soybean. The increase of oleic fatty acid ranged from 61 to 68% in 2007, and from 27 to 51% in 2008, depending on the rotation. The increase of oleic acid was accompanied by significant increases in seed concentrations of phosphorus (P), iron (Fe), and boron (B). In 2007, the increase of P ranged from 60 to 75%, Fe from 70 to 72%, and B from 34 to 69%. In 2008, the increase of P ranged from 82 to 106%, Fe from 32 to 84%, and B from 62 to 77%. Continuous soybean had higher linoleic:oleic ratio and linoleic: palmitic + stearic + oleic ratio, indicating that relative quantity of linoleic acid decreased in rotated crops. The total production of protein, oil, stearic and oleic fatty acids was the lowest in continuous soybean. The total production of palmitic acid was inconsistent across years. The results show that soybean- corn rotation affects seed composition by consistently increasing seed oleic fatty acid, P, Fe, and B concentrations. Higher oleic acid, unsaturated fatty acid, is desirable for oil stability and long-shelf storage. The mechanisms of how these nutrients are involved are not yet understood

    The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners

    Get PDF
    International Journal of Exercise Science 9(5): 625-634, 2016. Research has indicated that combined aerobic and anaerobic training (concurrent training) may improve aerobic performance greater than aerobic training alone. The purpose of this investigation was to establish any associations between aerobic and anaerobic performance. Eleven participants (n = 11, age = 34.1 ± 13 years, VO2max = 58.4 ± 7.8) volunteered for this study. Participants were asked for endurance training experience (4.7 ± 3.7 years) and resistance training experience (4.1 ± 4.6 years). To meet training status, participants were to have a VO2max in the 80th percentile as per ACSM guidelines. The Bruce treadmill test was used to measure aerobic performance. In order to measure anaerobic performance, several tests were completed utilizing a force platform. A Pearson Product R Correlation Coefficient was calculated to determine correlations between variables. The results show significant correlation between VO2max and RFD (r = 0.68). Further analyses utilizing Cohen’s effect size indicated a strong association between VO2max and peak force, as well as running efficiency and peak power, relative peak power, and power endurance. These results indicate an existing possibility that anaerobic performance measures such as RFD may have a positive relationship with aerobic performance measures such as VO2max. Therefore, it may be beneficial to integrate specific training components which focus on improving RFD as a method of improving running performance

    Guillain-Barré Syndrome-related campylobacter jejuni in Bangladesh: ganglioside mimicry and cross-reactive antibodies

    Get PDF
    BACKGROUND: <br/> Campylobacter jejuni is the predominant antecedent infection in Guillain-Barré syndrome (GBS). Molecular mimicry and cross-reactive immune responses to C. jejuni lipo-oligosaccharides (LOS) precipitate the development of GBS, although this mechanism has not been established in patients from developing countries. We determined the carbohydrate mimicry between C. jejuni LOS and gangliosides, and the cross-reactive antibody response in patients with GBS in Bangladesh.<br/> METHODOLOGY:<br/> Sera from 97 GBS patients, and 120 neurological and family controls were tested for antibody reactivity against LOS from C. jejuni isolates from GBS patients in Bangladesh (BD-07, BD-39, BD-10, BD-67 and BD-94) by enzyme-linked immunosorbent assay (ELISA). Cross-reactivity to LOS was determined by ELISA. The LOS outer core structures of C. jejuni strains associated with GBS/MFS were determined by mass spectrometry.<br/> PRINCIPLE FINDINGS:<br/> IgG antibodies to LOS from C. jejuni BD-07, BD-39, BD-10, and BD-67 IgG antibodies were found in serum from 56%, 58%, 14% and 15% of GBS patients respectively, as compared to very low frequency (<3%) in controls (p<0.001). Monoclonal antibodies specific for GM1 and GD1a reacted strongly with LOS from the C. jejuni strains (BD-07 and BD-39). Mass spectrometry analysis confirmed the presence of GM1 and GD1a carbohydrate mimics in the LOS from C. jejuni BD-07 and BD-39. Both BD-10 and BD-67 express the same LOS outer core, which appears to be a novel structure displaying GA2 and GD3 mimicry. Up to 90-100% of serum reactivity to gangliosides in two patients (DK-07 and DK-39) was inhibited by 50 µg/ml of LOS from the autologous C. jejuni isolates. However, patient DK-07 developed an anti-GD1a immune response while patient DK-39 developed an anti-GM1 immune response.<br/> CONCLUSION:<br/> Carbohydrate mimicry between C. jejuni LOS and gangliosides, and cross-reactive serum antibody precipitate the majority of GBS cases in Bangladesh

    Single-particle-sensitive imaging of freely propagating ultracold atoms

    Full text link
    We present a novel imaging system for ultracold quantum gases in expansion. After release from a confining potential, atoms fall through a sheet of resonant excitation laser light and the emitted fluorescence photons are imaged onto an amplified CCD camera using a high numerical aperture optical system. The imaging system reaches an extraordinary dynamic range, not attainable with conventional absorption imaging. We demonstrate single-atom detection for dilute atomic clouds with high efficiency where at the same time dense Bose-Einstein condensates can be imaged without saturation or distortion. The spatial resolution can reach the sampling limit as given by the 8 \mu m pixel size in object space. Pulsed operation of the detector allows for slice images, a first step toward a 3D tomography of the measured object. The scheme can easily be implemented for any atomic species and all optical components are situated outside the vacuum system. As a first application we perform thermometry on rubidium Bose-Einstein condensates created on an atom chip.Comment: 24 pages, 10 figures. v2: as publishe

    Accurate screened exchange band structures for transition metal monoxides MnO, FeO, CoO and NiO

    Full text link
    We report calculations of the band structures and density of states of the four transition metal monoxides MnO, FeO, CoO and NiO using the hybrid density functional sX-LDA. Late transition metal oxides are prototypical examples of strongly correlated materials, which pose challenges for electronic structure methods. We compare our results with available experimental data and show that our calculations yield accurate predictions for the fundamental band gaps and valence bands of FeO, CoO and NiO. For MnO, the band gaps are underestimated, suggesting additional many-body effects that are not captured by our screened hybrid functional approach.Comment: 9 pages, 3 figures, 3 table

    Hybrid 2D surface trap for quantum simulation

    Full text link
    We demonstrate a novel optical trapping scheme for ultracold atoms. Using a combination of evanescent wave, standing wave, and magnetic potentials we create a deeply 2D Bose-Einstein condensate (BEC) at a few microns from a glass surface. Using techniques such as broadband "white" light to create evanescent and standing waves, we realize a smooth potential with a trap frequency aspect ratio of 300:1:1 and long lifetimes. This makes the setup suitable for many-body quantum simulations and applications such as high precision measurements close to surfaces.Comment: 5 pages, 4 figure

    Soybean Seed Protein, Oil, and Fatty Acids are Altered by S and S + N Fertilizers Under Irrigated or Non-irrigated Environments

    Get PDF
    Information on the effect of sulfur (S) or sulfur+nitrogen (S + N) on soybean seed composition is scarce. Thus, the objective of this study was to investigate the effects of S, and S + N fertilizers on soybean [(Glycine max (L.) Merr.)] seed composition in the Early Soybean Production System (ESPS) under irrigated (I) and nonirrigated (NI) environments. Two separate field experiments were conducted from 2005 to 2007. One experiment was irrigated, and the second experiment was nonirrigated. Under I condition, S at a rate of 44.8 kg/ha alone or with N at 112 kg/ha resulted in a consistent increase in seed protein and oleic acid concentrations, and a decrease in oil and linolenic acid concentrations compared with the control (C). For example, in 2006 and compared with the C, application of S + N increased the percentage up to 11.4% and 48.5% for protein and oleic acid, respectively. However, oil concentration decreased by 3%. Protein and oleic acid increase were accompanied by a higher percentage of leaf and seed N and S. Under NI conditions, seed protein and oleic acid concentrations were significantly higher in C than in any S or S + N treatments, but the oil and linolenic acid concentrations were significantly lower. The results indicate that specific rate of S alone or S + N combined can alter seed composition under irrigated or nonirrigated conditions. This knowledge may help plant breeders to develop and release cultivars to suit specific target locations to grow new value-added soybeans or select for specific seed composition traits under specific environmental stress factors such as drought

    Endogenous versus exogenous carbohydrate oxidation measured by stable isotopes in pre-pubescent children plus 13C abundances in foods consumed three days prior

    Get PDF
    Purpose: The purposes of the present study were to (a) examine resting metabolism, substrate utilization, and endogenous versus exogenous carbohydrate (CHO) oxidation before and after 30-g rapidly-digesting carbohydrate (RDC) ingestion using indirect calorimetry and breath test analysis of stable isotope concentrations in pre-pubescent children and (b) report the 13C abundances in foods consumed for three days prior. Methods: Nineteen children (n 1⁄4 10 boys, n 1⁄4 9 girls) at Tanner stage I or II participated (mean age ± 95% CI 1⁄4 9.84 ± 0.77 y) in this study. Food was administered to the children for three days preceding their scheduled breath tests. Breath tests and indirect calorimetry were performed after an 8-h fast before and 60 min following consumption of a 30-g simple RDC drink consisting of maltodextrin and sucrose. Open circuit spirometry and indirect calorimetry monitored resting metabolism and CHO oxidation. Separate breath samples were taken every 15 min. Samples of all foods and breath samples were analyzed for 13C and 12C abundances with a stable-isotope mass spectrometer. Results: 13C in expired breath samples were 23.81 + 1.64‰ at baseline and increased every 15 min after consumption of the CHO drink (p \u3c 0.001e0.009). Cumulative total, endogenous, and exogenous CHO utilization increased during the post-prandial period (p \u3c 0.001). Endogenous CHO oxidation was consistently greater than exogenous CHO oxidation (p \u3c 0.001e0.002). Blood glucose was elevated from baseline at 30- and 60-min post-prandial (p \u3c 0.001). Insulin did not change over time (p 1⁄4 0.184). Conclusions: The foods provided during the 3-day controlled diet effectively minimized 13C variation prior to metabolic testing. The 13C abundances of foods reported herein should serve as practical recommendations to reduce 13C intake before breath tests. While endogenous CHO oxidation remained greater in proportion to exogenous CHO oxidation, these findings suggest that even a relatively small amount of RDC can increase exogenous CHO oxidation and blood glucose in normal-weight children. To further examine shifts in endogenous versus exogenous CHO utilization, we recommend that future studies take steps to minimize 13C variation before breath tests and examine changes in substrate metabolism at rest and during exercise in normal weight and overweight pre-pubescent children. Clinical trial registration number: NCT03185884

    The doubly eclipsing quintuple low-mass star system 1SWASP J093010.78+533859.5

    Get PDF
    Our discovery of 1SWASP J093010.78+533859.5 as a probable doubly eclipsing quadruple system, containing a contact binary with P ~ 0.23 d and a detached binary with P ~ 1.31 d, was announced in 2013. Subsequently, Koo and collaborators confirmed the detached binary spectroscopically, and identified a fifth set of static spectral lines at its location, corresponding to an additional non-eclipsing component of the system. Here we present new spectroscopic and photometric observations, allowing confirmation of the contact binary and improved modelling of all four eclipsing components. The detached binary is found to contain components of masses 0.837 ± 0.008 and 0.674 ± 0.007M⊙, with radii of 0.832 ± 0.018 and 0.669 ± 0.018R⊙ and effective temperatures of 5185+25-20 and 4325+20-15 K, respectively; the contact system has masses 0.86 ± 0.02 and 0.341 ± 0.011M⊙ , radii of 0.79 ± 0.04 and 0.52 ± 0.05R⊙, respectively, and a common effective temperature of 4700 ± 50 K. The fifth star is of similar temperature and spectral type to the primaries in the two binaries. Long-term photometric observations indicate the presence of a spot on one component of the detached binary, moving at an apparent rate of approximately one rotation every two years. Both binaries have consistent system velocities around −11 to −12 km s-1, which match the average radial velocity of the fifth star; consistent distance estimates for both subsystems of d = 78 ± 3 and d = 73 ± 4 pc are also found, and, with some further assumptions, of d = 83 ± 9 pc for the fifth star. These findings strongly support the claim that both binaries – and very probably all five stars – are gravitationally bound in a single system. The consistent angles of inclination found for the two binaries (88.2 ± 0.3°and 86 ± 4°) may also indicate that they originally formed by fragmentation (around 9–10 Gyr ago) from a single protostellar disk, and subsequently remained in the same orbital plane
    corecore