98 research outputs found

    Picosecond time-resolved energy transfer within C-phycocyanin aggregates of Mastigocladus laminosus

    Get PDF
    We have investigated by picosecond absorption experiments how the size of C-phycocyanin aggregates from Mastigocladus laminosus influences the excitation energy transfer kinetics. Going from C-phycocyanin monomers to trimers the lifetime of the faster energy transfer component decreased from 57 ± 4 to 27 ± 4 ps over most of the wavelength range (580–645 nm) studied. This change was interpreted as the opening of fast transfer channels (α-84 → β-84 and/or β-84 → β-84) between two adjacent monomers in the trimeric unit. The 57 ps lifetime is probably due mainly to the β-155 → β-84 energy transfer step. The intermediate lifetime decreased from about 300 ps in the monomer to 100–120 ps in the trimer. The former is believed to be dominated by the equilibration process α-84 a3 β-84, while the latter probably represents the time required for the excitation energy to reach thermodynamic equilibrium within the trimer. The lifetime of the longest components was about 1 ns in both systems. This indicates that the chromophores in these C-phycocyanin complexes are more exposed to non-radiative processes (like, for instance, isomerization) compared to the chromophores in intact phycobilisomes, where this lifetime typically is about 1.8 ns. The anisotropy relaxation closely followed the isotropic lifetimes in both systems. The anisotropy after the initial fast relaxation, r(∞), was 0.29 ± 0.04 in monomers and decreased to 0.15 ± 0.03 in trimers. Measurements of the steady-state fluorescence excitation anisotropy gave the same results within the experimental error

    Femtosecond energy transfer between chromophores in allophycocyanin trimers

    Get PDF
    Ultrafast energy-transfer processes in allophycocyanin (APC) trimers from Mastigocladus laminosus have been examined by a femtosecond absorption technique. Isotropic absorption recovery kinetics with τ=440±30 fs were observed in APC trimers at 615 nm. In APC monomers such a fast process was not observed. The anisotropy in both samples was constant and close to 0.4 during the first few picoseconds. The results are consistent with a model of the APC trimer in which the two APC chromophores have different absorption spectra with maxima about 600 and 650 nm. The transfer of energy from the 600 nm chromophore to the 650 nm chromophore occurs in 440 fs and is dominated by the Förster dipole—dipole energy-transfer mechanism

    Carotenoid fluorescence in Dunaliella salina

    Get PDF
    Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid globules in vivo. In this study, we show that the carotenoid-rich globules emit clear green fluorescence, which can be used in, for example, fluorescence microscopy (e.g. CLSM) to obtain pictures of the cells and their carotenoid content

    Photophysics and Photobiology of the Carotenoid Singlet State

    No full text
    • …
    corecore