22,881 research outputs found
Technology survey of electrical power generation and distribution for MIUS application
Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed
Approximate theoretical performance evaluation for a diverging rocket
A simplified combustion model, which is motivated by available performance studies on the diverging rocket reactor, has been used as basis for an engine performance
evaluation. Comparison with conventional rocket configurations shows that an upper performance limit for the diverging reactor is comparable with performance
estimates for engines using an adiabatic work cycle. Development of the diverging reactor for engine applications may, however, offer some advantages for very hot, high-energy, propellant systems
Flow and acoustic characteristics of subsonic and supersonic jets from convergent nozzle
Acoustic and flow characteristics of subsonic and supersonic jets from convergent nozzle
Damping of bulk excitations over an elongated BEC - the role of radial modes
We report the measurement of Beliaev damping of bulk excitations in cigar
shaped Bose Einstein condensates of atomic vapor. By using post selection,
excitation line shapes of the total population are compared with those of the
undamped excitations. We find that the damping depends on the initial
excitation energy of the decaying quasi particle, as well as on the excitation
momentum. We model the condensate as an infinite cylinder and calculate the
damping rates of the different radial modes. The derived damping rates are in
good agreement with the experimentally measured ones. The damping rates
strongly depend on the destructive interference between pathways for damping,
due to the quantum many-body nature of both excitation and damping products.Comment: 5 pages, 4 figure
Hybrid Superconductor-Quantum Point Contact Devices using InSb Nanowires
Proposals for studying topological superconductivity and Majorana bound
states in nanowires proximity coupled to superconductors require that transport
in the nanowire is ballistic. Previous work on hybrid nanowire-superconductor
systems has shown evidence for Majorana bound states, but these experiments
were also marked by disorder, which disrupts ballistic transport. In this
letter, we demonstrate ballistic transport in InSb nanowires interfaced
directly with superconducting Al by observing quantized conductance at
zero-magnetic field. Additionally, we demonstrate that the nanowire is
proximity coupled to the superconducting contacts by observing Andreev
reflection. These results are important steps for robustly establishing
topological superconductivity in InSb nanowires
Exploring the Role of Enterprise Architecture in IS-enabled Ot: An EA Principles Perspective
© 2016 IEEE. Although EA principles have received considerable attention in recent years, there is still little known about how EA principles can be used to govern the transformation of the Information Systems enabled organization. In this research-in-progress paper, we communicate our initial step towards answering the sub-question: how do enforcing EA principles contribute to IS-enabled OT? Based on a comprehensive literature review, we initially propose five testable hypotheses and a research model, which is a pre-requisite to developing a data-driven theory for this important area of research. It is anticipated that the ensuing theory will provide a basis for further research studying the impact of EA on IS-enabled OT. The tested research model will also provide guidance to practitioners on how to effectively design and use EA principles in managing transformative changes caused by IS within their organizations and overall industry sectors
Recommended from our members
LENS® and SFF: Enabling Technologies for Optimized Structures
Optimized, lightweight, high-strength structures are needed in many applications from aerospace
to automotive. In pursuit of such structures, there have been proposed analytical solutions and
some specialized FEA solutions for specific structures such as automobile frames. However,
generalized 3D optimization methods have been unavailable for use by most designers.
Moreover, in the cases where optimized structural solutions are available, they are often hollow,
curving, thin wall structures that cannot be fabricated by conventional manufacturing methods.
Researchers at Sandia National Laboratories and the University of Rhode Island teamed to solve
these problems. The team has been pursuing two methods of optimizing models for generalized
loading conditions, and also has been investigating the methods needed to fabricate these
structures using Laser Engineered Net Shaping™ (LENS®) and other rapid prototyping
methods. These solid freeform fabrication (SFF) methods offer the unique ability to make
hollow, high aspect ratio features out of many materials. The manufacturing development
required for LENS to make these complex structures has included the addition of rotational axes
to Sandia’s LENS machine bringing the total to 5 controlled axes. The additional axes have
required new efforts in process planning. Several of the unique structures that are only now
possible through the use of SFF technology are shown as part of the discussion of this exciting
new application for SFF.Mechanical Engineerin
Analytic Representation of The Dirac Equation
In this paper we construct an analytical separation (diagonalization) of the
full (minimal coupling) Dirac equation into particle and antiparticle
components. The diagonalization is analytic in that it is achieved without
transforming the wave functions, as is done by the Foldy-Wouthuysen method, and
reveals the nonlocal time behavior of the particle-antiparticle relationship.
We interpret the zitterbewegung and the result that a velocity measurement (of
a Dirac particle) at any instant in time is, as reflections of the fact that
the Dirac equation makes a spatially extended particle appear as a point in the
present by forcing it to oscillate between the past and future at speed c. From
this we infer that, although the form of the Dirac equation serves to make
space and time appear on an equal footing mathematically, it is clear that they
are still not on an equal footing from a physical point of view. On the other
hand, the Foldy-Wouthuysen transformation, which connects the Dirac and square
root operator, is unitary. Reflection on these results suggests that a more
refined notion (than that of unitary equivalence) may be required for physical
systems
- …