1,055 research outputs found

    Depletion isolation effect in Vertical MOSFETS during transition from partial to fully depleted operation

    No full text
    A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm

    Asymmetric gate induced drain leakage and body leakage in vertical MOSFETs with reduced parasitic capacitance

    No full text
    Vertical MOSFETs, unlike conventional planar MOSFETs, do not have identical structures at the source and drain, but have very different gate overlaps and geometric configurations. This paper investigates the effect of the asymmetric source and drain geometries of surround-gate vertical MOSFETs on the drain leakage currents in the OFF-state region of operation. Measurements of gate-induced drain leakage (GIDL) and body leakage are carried out as a function of temperature for transistors connected in the drain-on-top and drain-on-bottom configurations. Asymmetric leakage currents are seen when the source and drain terminals are interchanged, with the GIDL being higher in the drain-on-bottom configuration and the body leakage being higher in the drain-on-top configuration. Band-to-band tunneling is identified as the dominant leakage mechanism for both the GIDL and body leakage from electrical measurements at temperatures ranging from ?50 to 200?C. The asymmetric body leakage is explained by a difference in body doping concentration at the top and bottom drain–body junctions due to the use of a p-well ion implantation. The asymmetric GIDL is explained by the difference in gate oxide thickness on the vertical (110) pillar sidewalls and the horizontal (100) wafer surface

    Depletion-Isolation Effect in Vertical MOSFETs During the Transition From Partial to Fully Depleted Operation

    No full text
    A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm

    Softening the Blow of Social Exclusion: The Responsive Theory of Social Exclusion

    Get PDF
    Social exclusion is an interactive process between multiple people, yet previous research has focused almost solely on the negative impacts on targets. What advice is there for people on the other side (i.e., sources) who want to minimize its negative impact and preserve their own reputation? To provide an impetus for research on the interactive nature of exclusion, we propose the Responsive Theory of Social Exclusion. Our theory postulates that targets and sources’ needs are better maintained if sources use clear, explicit verbal communication. We propose that sources have three options: explicit rejection (clearly stating no), ostracism (ignoring), and ambiguous rejection (being unclear). Drawing on psychology, sociology, communications, and business research, we propose that when sources use explicit rejection, targets’ feelings will be less hurt, their needs will be better protected, and sources will experience less backlash and emotional toil than if sources use ambiguous rejection or ostracism. Finally, we propose how the language of rejections may impact both parties

    Innovative Aircraft Aeroelastic Modelling and Control

    Get PDF
    The aeroelastic design of innovative aircraft wing configurations imposes the designer to deal with specific phenomena, which are not usually considered in classical aircraft definition. The design process itself, though, gives the designer several indications on how to maintain the safety standards imposed by regulations. The investigation of the basic aeroelastic principles for unconventional wings with high aspect ratios can be extremely interesting as, once introduced in a multidisciplinary design, they can be very effective in giving an early determination of the static and dynamic behaviour of the aircraft, leading to significant improvements in the configuration weight, cost, and overall performance. The paper shows some preliminary results as part of the main objectives of the In.A.Team group (Innovative Aircraft Theoretical-Experimental Aeroelastic Modelling) at Politecnico di Torino, Italy. The In.A.Team Project has the following main objectives: 1) to develop multidisciplinary analysis methods appropriate to unconventional aircrafts (highly flexible, "morphing" vehicles); 2) to develop the capability of illustrating and understanding the effects of uncertainties on the behaviour of an aeroelastic system; 3) to apply the innovative adaptive L1 control techniques to highly flexible wings, 4) to integrate theoretical analysis with commercial structural (FEM) and aerodynamic tools (CFD). 5) to design and manufacture an aeroelastic experimental-test-model. 6) to validate theoretical/numerical results by vibration and aeroelastic wind tunnel test

    Innovative Aircraft Aeroelastic Modelling and Control

    Get PDF
    The aeroelastic design of innovative aircraft wing configurations imposes the designer to deal with specific phenomena, which are not usually considered in classical aircraft definition. The design process itself, though, gives the designer several indications on how to maintain the safety standards imposed by regulations. The investigation of the basic aeroelastic principles for unconventional wings with high aspect ratios can be extremely interesting as, once introduced in a multidisciplinary design, they can be very effective in giving an early determination of the static and dynamic behaviour of the aircraft, leading to significant improvements in the configuration weight, cost, and overall performance. The paper shows some preliminary results as part of the main objectives of the In.A.Team group (Innovative Aircraft Theoretical-Experimental Aeroelastic Modelling) at Politecnico di Torino, Italy. The In.A.Team Project has the following main objectives: 1) to develop multidisciplinary analysis methods appropriate to unconventional aircrafts (highly flexible, "morphing" vehicles); 2) to develop the capability of illustrating and understanding the effects of uncertainties on the behaviour of an aeroelastic system; 3) to apply the innovative adaptive L1 control techniques to highly flexible wings, 4) to integrate theoretical analysis with commercial structural (FEM) and aerodynamic tools (CFD). 5) to design and manufacture an aeroelastic experimental-test-model. 6) to validate theoretical/numerical results by vibration and aeroelastic wind tunnel tests

    Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    Get PDF
    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy
    • 

    corecore