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Abstract   

The aeroelastic design of innovative 
aircraft wing configurations imposes the 
designer to deal with specific phenomena, which 
are not usually considered in classical aircraft 
definition. The design process itself, though, 
gives the designer several indications on how to 
maintain the safety standards imposed by 
regulations. The investigation of the basic 
aeroelastic principles for unconventional wings 
with high aspect ratios can be extremely 
interesting as, once  introduced in a 
multidisciplinary design, they can be very 
effective in giving an early determination of the 
static and dynamic behaviour of the aircraft, 
leading to significant improvements in the  
configuration weight, cost, and overall 
performance. The paper shows some 
preliminary results  as part of the main 
objectives of the In.A.Team group (Innovative 
Aircraft Theoretical-Experimental Aeroelastic 
Modelling) at Politecnico di Torino, Italy. The 
In.A.Team Project has the following main 
objectives: 

• to develop multidisciplinary analysis 
methods appropriate to unconventional 
aircrafts (highly flexible, “morphing” vehicles); 

• to develop the capability of illustrating 
and understanding the effects of uncertainties 
on the behaviour of an aeroelastic system;  

• to apply the innovative adaptive ℒଵ 
control techniques to highly flexible wings,  

• to integrate theoretical analysis with 
commercial structural (FEM) and aerodynamic 
tools (CFD). 

• to design and manufacture an aeroelastic 
experimental-test-model.  

• to validate theoretical/numerical results 
by vibration and aeroelastic wind tunnel tests.  

1  Introduction  
Innovative aircraft wings such as High-altitude, 
long-endurance (HALE) aircraft employ 
slender, flexible wings to reduce weight and 
enable the high lift-to-drag ratios necessary to 
achieve sustained flight for months or years. 
Increased wing flexibility can lead to large static 
structural deflections for trimmed states, which 
has attracted researchers to the effects of 
geometric nonlinearity on the flight dynamics 
[1,2] and dynamic stability [3,4,5] of standard 
unswept wings or more advanced joined-wing 
vehicle concepts [6]. 

The complete nonlinear-aeroelastic 
analysis is extremely complex and requires an 
integration of different disciplines to develop a 
new design approach, effective in forecasting 
and avoiding catastrophic events such as the one 
occurred to the NASA’s Helios aircraft. The 
Helios Prototype aircraft involved in the mishap 
was a proof-of-concept solar electric- powered 
flying wing designed to perform high altitudes 
high endurance missions. The failure occurred 
during a test flight on June 26, 2003. The NASA 
Mishap Investigation indicated that the Helios 
Prototype appeared to have experienced 
undamped pitch oscillations that had led to a 
partial breakup of the aircraft. Following the 
episode, main NASA recommendations were 
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revised as to include: 1) the development of 
more advanced, multidisciplinary “time-
domain” analysis methods appropriate to highly 
flexible, “morphing” vehicles; 2) the 
development of ground-test procedures and 
techniques appropriate to this class of vehicles 
to validate new analysis methods and 
predictions; 3) the development of 
multidisciplinary models, which can describe 
the nonlinear dynamic behaviour of aircraft 
modifications [7]. 
The In.A.TEAM Project has a 
theoretical/experimental nature and the main 
scope is the investigation of basic aeroelastic 
principles for unconventional high aspect ratio 
wings. The main objective is to develop simple 
analytical methods which should be used for a 
better understanding and estimation of the main 
factors contributing to the occurrence of 
different critical and supercritical behaviour of 
such an aircraft. Early determination of the 
static and dynamic behaviour of an aircraft can 
lead to significant improvement in configuration 
weight, cost, and performance. In the 
preliminary design phase, analytical methods 
are preferred when included into the integrated 
design process. Aeroelastic critical velocities 
estimated from deterministic analyses, assume 
that physical and geometrical parameters are 
perfectly known. However, deterministic 
mechanical description of composite material 
may be too penalizing, leading to an increase in 
structures weight, or may be not conservative, 
leading to unacceptable safety levels. 

Accuracy of the simple analytical structural 
models must be adequate to develop and design 
active control systems for the suppression of 
aeroelastic oscillations, which might lead to 
critical instability phenomena. It is very well 
known that the employment of adaptive active 
control technique is extremely relevant on high 
aspect ratio wings. As a matter of fact, active 
control improves structural response, without 
the added weight penalty, as opposed to passive 
control, where increasing in structural rigidity is 
achieved at the weight expenses. Active control 
can take advantage of the technological 
developments in the areas of materials and 
computer sciences. The combination of 
multifunctional materials with faster computers 

and real time data acquisition systems has paved 
the way for the application of adaptive control 
techniques, able to mitigate structural problems 
and robust to uncertainties, noise and highly 
variable external loads. In particular, among the 
adaptive active control system, the ℒଵtechnique 
has shown interesting features: the investigation 
of possible application to flutter control for high 
aspect ratio composite wings is exactly one of 
the topics of the In.A.TEAM Project.  
This paper presents a preliminary analysis of an 
advanced control strategy architecture which 
will be the basis for future development. In 
particular, section 2 presents a brief survey of 
the aeroelastic models which can be developed 
for flutter prediction and control. In section 3, a 
simple 3 degree-of-freedom (DOF), 
bidimensional wing model is then developed 
and validated with results collected in the 
present literature. A motivational example is 
shown on the Goland’s wing in Section 4: the 
limits of an output feedback linear quadratic 
regulator (LQR) control strategy are analyzed, 
especially in presence of gradually or 
instantaneous degradation of the structural 
bending stiffness. Finally, the mathematical 
implications of the ℒଵ control technique are 
discussed. 

2  Aeroelastic models  
This section discusses a range of structural 

models for aeroelastic analysis with the purpose 
of determining the level of physical fidelity to 
predict the flutter boundary of a composite high 
aspect ratio wing configuration. The simplest 
model of an aeroelastic system with bending 
torsion instability is the classical typical airfoil 
section model based on linear springs (Fig. 1), 
which can be considered the first term of 
comparison [8]. It is essentially an  elastic 
structure constrained in the pitch ( and plunge, 
(h). Despite its simplicity, it continues to be a 
test bed for investigations of nonlinear stiffness 
[9], flutter and limit cycle oscillations, dynamic 
stall [10] as well as  structural uncertainty effect 
on classical wing flutter characteristics [11]. 
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Fig 1. Typical airfoil section model. 
 

A more realistic wing model for composite 
structures can be obtained introducing a 
bending-torsion coupled stiffness K by using a 
wing-box model for the wing cross-section and 
a circumferentially asymmetric stiffness (CAS) 
configuration for the composite ply lay-up. The 
resultant equations of motion can be expressed 
in nondimensional form as follows: 
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  (2) 

 
and c11,c12,c22 are coefficients dependent on the 
shape functions used for the 2 D.o.F. reduction. 
Lift and moment coefficients are determined 
through an external unsteady aerodynamic 
model. Generally speaking, the models used for 
the calculation of unsteady aerodynamic loads 
can be divided into three groups:  
 analytical models such as Theodorsen’s 

function, Wagner’s function, Kussner’s 
function, strip theory, piston theory etc.  

 models based on the Euler/Navier-Stokes 
equations, which might be extremely 

demanding as far as computing resources 
are concerned;  

 models based on singularity elements such 
as vortex-lattice methods or vortex-panel 
methods.  

During the preliminary design phase, when 
parametrical studies and comparisons of 
different configurations have to be performed, a 
time-saving procedure can be of strategic 
importance. For this reason analytical models 
are usually favoured at this stage, especially if 
expressed in the state-space formulation, 
particularly useful for control applications. 
Wagner’s function or Roger’s approximation 
are thus preferred as they accurately transforms 
the unsteady aerodynamic forces from 
frequency to time domain.   
It is important to noticed that, when the values 
of the angle-of-attack become significant, the 
aerodynamic nonlinearities could play an 
important role in the critical and post-critical 
aeroelastic behaviour, modifying consistently 
the  flutter characteristics. To take into account 
this effect, semi-empirical dynamic stall models 
can be introduced. The current literature 
presents a variety of different empirical models 
of dynamic stall: for example there is the model 
developed at the ONERA research center [10] 
or the Beddoes [12] model, later extended by 
Leishman and Beddoes [13], among the others. 
The aerodynamic model considered in this 
paper omits the stall model, which limits the 
analysis to a basic flutter prediction. 
 
The more complex model of Fig. 2 can be 
obtained using a set of nonlinear beam 
equations, which highlight the bending-torsion 
elastic coupling due to two different effects: 

 the composite coupling due to the CAS 
configuration; 

 the coupling deriving from the  second-
order geometric non-linearities.  

Removing these nonlinearities the model 
reduces to the classical Euler-Bernoulli 
composite beam equations, which enables the 
investigation of structural nonlinear effects on 
flutter and limit cycle oscillations. 
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Fig 2. Non linear composite Euler-
Bernoulli beam model 

 
The governing aeroelastic equations are derived, 
in the case of a nonlinear and initially straight 
and inextensional composite Euler-Bernoulli 
beam model, using the extended Hamilton's 
principle [14,15,16,17]. The resulting equations 
are valid for long, slender, composite beams, 
experiencing displacements from moderate to 
large (second-order approximation):  
 

ቐ
ݒ̈݉ + ܿଶ̇ݒ + ᇱᇱᇱᇱݒଷܫܧ +ܰజ = ݍ
ݓ̈݉ + ܿଷ̇ݓ +݉݁߶ + ᇱᇱᇱᇱݓଶܫܧ +′′′߶ܭ− ܰ௪ = ௪ݍ
݆ଵ߶̈ + ܿସ߶̇ ݓ̈݁݉+ − ௧߶′ᇱܬܩ ᇱᇱᇱݓܭ+ +ܰథ = థݍ

  (3) 
 
where Nv , Nw and N  are the second order non-
linear terms:   

 
జܰ = ଷܫܧ) − ᇱᇱ(߶ᇱᇱݓ)(ଶܫܧ + ᇱ(ᇱᇱݓ߶)௧ܬܩ + ᇱ(߶ᇱᇱ߶)ܭ

 ᇱ(′′ݓᇱᇱݓ)ܭ−ᇱ(߶ᇱ߶)ܭ+
ܰ௪ = ଷܫܧ) − −ᇱᇱ(߶ᇱᇱݓ)(ଶܫܧ ௧൫߶ᇱ௩ܬܩ

ᇲᇲ൯
ᇱ
ᇱ(ᇱݓᇱᇱᇱݒ)ܭ−

థܰ = ଷܫܧ) − −(ᇱᇱݓᇱᇱݒ)(ଶܫܧ ᇱ(ᇱݓᇱᇱݒ)௧ܬܩ + (߶ᇱᇱᇱݒ)ܭ
   (4) 

 
The beam model considered in the present paper 
is derived under the same hypothesis discussed 
in [18,19] and can be considered adequate for 
preliminary parametric analysis of the flutter 
behaviour of slender wings. The general 
hypotheses is that the span-wise is by far greater 
than the transversal section dimension which, in 
turn, is greater than thickness. Under these 
assumptions, it is possible to adopt a beam-wise 
approximation to model the real wing-
box/tubular main spar. The composite box was 
considered manufactured by planar and thin 
plate elements with different lay-ups,  obtained 
assembling unidirectional or multidirectional 
composite plies. Assumptions on a constant 

shear flow and negligible circumferential 
stresses are applied in the derivation of the 
section stiffness. Strains are represented by 
longitudinal expression, according to the 
classical beam theory, whereas no indications 
are given concerning the  displacements in the 
section plane. They are included in a mixed 
formulation where the shear flow is determined 
accordingly. Finally, stiffness expressions are 
defined and used for a preliminary structural 
approximation of the composite wing-box 
[18,19]. 
 
Flutter condition is, by definition, a borderline 
situation (or neutral stability) where 
disturbances may cause convergent or divergent 
oscillations, depending they occur in a range of 
speed below or above the flutter speed. The 
mathematical formulation leads to a complex 
eigenvalue problem, where two characteristic 
numbers have to be determined: speed and 
frequency. The flutter speed and frequency are 
defined as the lowest airspeed and 
corresponding frequency at which a given 
structure, flying in a specific atmosphere, will 
exhibit sustained simple harmonic oscillations. 
What happens is that, in the flutter condition, 
the real part of at least one of the characteristic 
exponents changes its sign from negative to 
positive: zero damping parameter identifies 
flutter speed.   
The classical flutter calculation [8] is derived 
following the well known V-g approach, which 
is referred to the undeformed configuration, 
considered as the initial steady state over which 
the small perturbations are superimposed. The 
dynamic characteristics of the perturbed 
motions do not depend on the specific steady 
condition assumed for their evaluation. 
Classical flutter speed or linear flutter speed 
(LFS) is usually calculated under this 
assumption. Conversely when the structure 
presents a non-linear behaviour, due to the high 
structural flexibility, the dynamic of the 
perturbed motion is influenced by the selected 
equilibrium point. The reduced linear 
perturbation system originates a linear 
approximation of the behaviour of the system in 
the neighbourhood of the static equilibrium 
point, with the possibility of calculating a flutter 
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speed for each trim condition. In this case the 
flutter speed is referred to as “flutter velocity in 
non-linear equilibrium condition” (NLFS).  In 
the case of slender HALE structures the 
classical approach is no longer suitable to obtain 
correct flutter identification [3,4,5]. 

3  Flutter results on a simplified aeroelastic 
model  
A preliminary analysis of the flutter dynamics, 
as well as a comparison between different 
control systems and actuation modes, is firstly 
carried out using a simplified, 2-dimensional, 3-
degrees-of-freedom linear model (Fig.3).  

 
 

Fig 3. Simplified 3 D.o.F. 
 

At this stage this is the only configuration taken 
into consideration, while further studies will 
extend the derived results to the 3-dimensional 
wing model to take into account the nonlinear 
effects (Fig.2). 
The V-g method assumes harmonic motion at 
any given speed, under the hypothesis that the 
system is subject to an unknown artificial 
structural damping. Positive artificial damping 
is required for harmonic motion above flutter 
speed, while negative damping (i.e. excitation) 
is required below flutter speed to sustain the 
motion. Flutter speed is therefore defined as the 
speed at which the required artificial damping 
changes its sign. 
Such an approach is well suited only for 
determining the flutter speed of a given model, 
rather than analyzing its dynamics and 
designing a control system. For this purpose, a 
state-space (SS) formulation which includes V 
as a parameter is necessary. To this purpose, 

Roger’s approximation of the Theodorsen 
function [20] has been used to evaluate the 
aerodynamic forces in the time domain and 
obtain an SS-model by augmenting the system 
with additional states. 
Under the assumption of small oscillations, and 
viewing the profile as a one-dimensional 
distribution of mass along the chord with 
density (ݔ)ߩ, we can write the vertical 
displacement z (positive upwards) of an 
arbitrary point of the profile as 
 
ݖ = −ℎ − ߙݔ − ݔ] − ܾ(ܿ − ߚ[(ܽ ∙ ݔ]ܷ − ܾ(ܿ − ܽ)]  (5) 
 
where: 

 h is the vertical displacement of the 
shear center (positive downwards) 

 is the airfoil angular deflection from 
the equilibrium condition (positive 
clockwise) 

 x is the coordinate from the shear center 
along the chord (positive aft) 

 b is the length of the half-chord 
 a is the chordwise distance between the 

shear center and the midchord 
(nondimensional with b, positive with 
the shear center past the midchord) 

 c is the chordwise distance between the 
trailing edge flap hinge and the 
midchord (nondimensional with b) 

  is the trailing edge flap deflection 
(positive clockwise) 

 U is the unit step function centered on 
the trailing edge flap hinge. 

The equations of motion can be derived 
using the Lagrange approach. The 3 degrees-of-
freedom model can be thus described by the 
following equation:  
 

൞
݉ℎ̈ + ߙ̈ܵ + ఉܵ̈ߚ + ௛ℎܭ = ܨ
ܵℎ̈ + ߙ̈ܫ + ఉܫൣ + ఉܾܵ(ܿ − ܽ)൧̈ߚ + ߙఈܭ = ఈܯ

ఉܵ ℎ̈ + ఉܫൣ + ఉܾܵ(ܿ − ܽ)൧̈ߙ + +ߚఉ̈ܫ ߚఉܭ = ఉܯ

 (6) 

 
or in the equivalent matrix form, using 
nondimensional generalized forces and 
displacements: 
 



BATTIPEDE M., CESTINO E., FRULLA G., GERUSSI S., GILI P.  

6 

⎣
⎢
⎢
⎢
⎡݉

ௌ
௕

ௌഁ
௕

ௌ
௕

ூ
௕మ

ூഁ
௕మ

+ ௌഁ
௕

(ܿ − ܽ)
ௌഁ
௕

ூഁ
௕మ

+ ௌഁ
௕

(ܿ − ܽ) ூഁ
௕మ ⎦

⎥
⎥
⎥
⎤
൞

௛̈
௕
ߙ̈
ߚ̈
ൢ +

⎣
⎢
⎢
⎢
⎡
௄೓
௕

0 0

0 ௄ഀ
௕మ

0

0 0 ௄ഁ
௕మ ⎦
⎥
⎥
⎥
⎤
ቐ
௛
௕
ߙ
ߚ
ቑ =

⎩
⎪
⎨

⎪
⎧

ி
௕
ெഀ
௕మ
ெഁ

௕మ⎭
⎪
⎬

⎪
⎫

   (7) 

 
where:  

 ܭ௛,ఈ,ఉ are the linear springs restraining 
each degree of freedom. ܭ௛,ఈ model the 
flexural and torsional stiffnesses, while 
 ఉ models the stiffness of the flapܭ
mechanical link that restrains ߚ to the 
commanded position ߚ௖ 

 m is the section mass (including aileron) 
 I is the section moment of inertia 

(including aileron) about the shear center 
 S is the section static unbalance 

(including aileron) about the shear center 
(equal to ݉ݔఏ, ݔఏ being the distance 
between shear center and section CG, 
positive with the CG aft) 

 ܫఉ is the aileron moment of inertia about 
the hinge axis 

 ఉܵ is the aileron static unbalance about 
the hinge axis (equal to ݉ఉݔఉ, ݉ఉ  being 
the aileron mass and ݔఉ being the 
distance between hinge axis and aileron 
CG, positive with the CG aft) 
 

Forces and moments on the right-hand side of 
Eq. 7 are the unsteady aerodynamic forces and 
moments given by Roger’s approximation [20].  
Aerodynamic forces for the model of Fig.3 are 
expressed as: 
 

⎩
⎪
⎨

⎪
⎧
ܨ
ܾ
ఈܯ

ܾଶ
ఉܯ

ܾଶ ⎭
⎪
⎬

⎪
⎫

= ݍ ቈ2ܥ(݇){ܴ}[ ଵܵ]{ݔ௦} +
2ܾ
ܸ
]{ܴ}(݇)ܥ ଶܵ]{̇ݔ௦}

+
2ܾଶ

ܸଶ
{௦ݔ̈}[௡௖ܯ] +

2ܾ
ܸ

{௦ݔ̇}[௡௖ܤ]

+  ൨{௦ݔ}[௡௖ܭ]2

(8) 
where: 

 ݔ௦ = ቐ
ℎൗܾ
ߙ
ߚ
ቑ 

  ܥ(݇) is the Theodorsen function ( [8]) 
 ݇ = ఠ௕

௏
 is the reduced frequency of the 

section motion 
 ݍ = ଵ

ଶ
 ଶ is the dynamic pressureܸߩ

 {ܴ}, [ ଵܵ], [ܵଶ], ,[௡௖ܯ] ,[௡௖ܤ]  are [௡௖ܭ]
quantities (derived from [21]) which 
depend only on the section geometry 
(through a and c). 

As Theodorsen’s theory is only valid for pure 
harmonic motion, it becomes less and less 
accurate as the real part of the dominant mode 
eigenvalue increases in absolute value. This is 
the reason why only the imaginary axis (and not 
whole s-plane) is considered  when the least-
square fit is performed to evaluate the 
approximated aerodynamic matrix from the 
exact one (ݏ)ܣ. This is also the reason  why this 
model does not consider static divergence. The 
eigenvalues on the real axis (not plotted on the 
root loci in this paper) have nothing to do with 
static divergence: they refer to the augmented 
aerodynamic states and are always stable as 
long as the plunge and pitch flutter modes are 
stable. 
Eq. 8 is written part in the frequency domain 
(the Theodorsen term) part in time domain (the 
state vector and its derivatives). Expressing the 
aerodynamic forces in the frequency domain 
only, Eq. 8 can be rewritten as: 
 

⎩
⎪
⎨

⎪
⎧
ܨ
ܾ
ఈܯ

ܾଶ
ఉܯ

ܾଶ ⎭
⎪
⎬

⎪
⎫

= ݍ ቂ2ܥ(݇){ܴ}[ ଵܵ] + [ଶܵ]{ܴ}(݇)ܥᇱݏ2

+ [௡௖ܯ]ᇱଶݏ2 + [௡௖ܤ]ᇱݏ2 + ቃ[௡௖ܭ]2 {௦ݔ}
=  {௦ݔ}(ᇱݏ)ܣݍ

 (9) 
 
where ݏᇱ = ݏ ௕

௏
 is the nondimensional Laplace 

variable. 
Roger’s method approximates the exact 
aerodynamic matrix with the series: 
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(′ݏ)ܣ ≅ (′ݏ)௔௣ܣ = ଴ܲ + ଵܲݏᇱ + ଶܲݏ′ଶ + ෍ ௝ܲݏ′
ᇱݏ + ௝ିଶߛ

ே

௝ୀଷ

 

(10) 
 
where the ߛ௝ିଶ are the aerodynamic poles, 
arbitrarily chosen in the range of reduced 
frequencies of interest. The coefficients of the 
matrices ௝ܲ are determined by performing least-
square fit of the exact matrix (′ݏ)ܣ evaluated 
along the imaginary axis over M values of 
ᇱݏ = ݏ ௕

௏
= ݅߱ ௕

௏
= ݅݇ , with ܯ > ܰ + 1. 

We define ܰ − 2 augmented aerodynamic states 
as: 
 
൛ݔ௔௝ൟ =

ᇱݏ

ᇱݏ + ௝ିଶߛ
{௦ݔ} =  

ݏ

ݏ + ܸ
ܾ ௝ିଶߛ

݆       {௦ݔ} = [3 …ܰ] 

(11) 
whose dynamics are by definition: 
 

൛̇ݔ௔௝ൟ = {௦ݔ̇} −
ܸ
ܾ ௝ିଶߛ

൛ݔ௔௝ൟ 
(12) 

 
Substituting Eq. 10 into Eq. 9 and comparing it 
to Eq. 8, the following expression can be 
obtained: 
 

{௦ݔ}ଶݏܯ + {௦ݔ}ܭ = ݍ ଴ܲ{ݔ௦} + ݍ ଵܲݏ
௕
௏

{௦ݔ} +

ݍ ଶܲݏଶ ቀ
௕
௏
ቁ
ଶ

{௦ݔ} + ∑ ݍ ௝ܲ൛ݔ௔௝ൟே
௝ୀଷ    

 (13) 
 
Performing the transformation from frequency 
to time domain, Eq. 13 and Eq. 12 can be 
rewritten together in matrix form as: 
 

⎩
⎪
⎨

⎪
⎧
௦ݔ̇
௦ݔ̈
௔ଷݔ̇
…
⎭௔ேݔ̇

⎪
⎬

⎪
⎫

=

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 ܫ 0 … 0
ഥܭഥିଵܯ− തܤഥିଵܯ− ഥିଵܯݍ ଷܲ … ഥିଵܯݍ ேܲ

0 ܫ −
ܸ
ܾ
ܫଵߛ … 0

… … … … …

0 ܫ 0 0
ܸ
ܾ ܫ௝ିଶߛ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
௦ݔ
௦ݔ̇
௔ଷݔ
…
⎭௔ேݔ

⎪
⎬

⎪
⎫

 

(14) 
 
where ܫ is a 33ݔ identity matrix and 
 

ഥܯ = ܯ ݍ− ଶܲ ൬
ܾ
ܸ
൰
ଶ

 
തܤ = ݍ− ଵܲ ቀ

௕
௏
ቁ                       (15) 

ഥܭ = ܭ − ݍ ଴ܲ 
 
The SS model is very effective in performing 
flutter predictions through the open loop root 
locus analysis and allows modern control 
techniques to be implemented as well. The 
obtained model has been validated by 
replicating the flutter parametric study of Ref. 
[8] (pp. 538-543). Fig.4 shows an example of a 
particular choice of system parameters from 
which it can be assumed that the two models are 
in a fairly good accordance. Discrepancies can 
be associated with the aerodynamic 
approximation (Eq. 10) introduced in the SS 
model of Eq. 14.  
 
 

 
Fig.4. Comparison between the SS model with 
Roger’s approximation (solid) and the model 

proposed in Ref. [8] (dashed)  

4 Flutter Active Control 
Goland’s wing (Ref. [22]) has been selected as a 
test case for the problem of feedback control 
system design. It has been reduced to the 2-D 
case by considering per-unit-length inertial 
properties, and assuming linear spring rigidities 
such that the system’s natural frequencies for 
the plunge and pitch mode are the same, 
respectively, of the first bending and first 
torsion modes of Goland’s wing. Note that, so 
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far, only the ܣ matrix of the SS model has been 
determined. While we can assume ܦ to be null, 
and ܥ = ଺௫଺ܫ] 0଺௫(ଷேି଺)]  i.e. ݕ =
,்{௦ݔ}]  matrix depends on the ܤ the ,்[்{௦ݔ̇} 
selected control actuation method. Two systems 
have been considered among those proposed in 
literature (Ref. [23-25]):  
 the trailing edge flap;  
 an array of piezoelectric patches applied to 

the wing surface to actively control its shape 
and rigidity. 

The former is more conventional and of easier 
implementation, while the latter appears better 
suited for this kind of application mostly due to 
the bandwidth requirements. 
From the point of view of the model of Fig.3, 
controlling the flap means applying an 
additional ܯఉ, while controlling the wing shape 
through piezo patches means applying also the 
additional contribution ܨ and ܯఈ . In both cases 
it is more convenient to formulate the control 
problem as the tracking of the commanded 
signals [ℎ௖  :௖] such that eq.(7) becomesߚ,௖ߙ,
 

൞ܯ

௛̈
௕
ߙ̈
ߚ̈
ൢ ܭ+ ቐ

௛ି௛೎
௕

ߙ − ௖ߙ
ߚ − ௖ߚ

ቑ =

⎩
⎪
⎨

⎪
⎧

ி
௕
ெഀ
௕మ
ெഁ

௕మ⎭
⎪
⎬

⎪
⎫

௔௘௥

    (16) 

 
It is now straightforward to derive a ܤ matrix to 
write the system (14) in the SS form: 
 

൜̇ݔ = ݔܣ + ݑܤ
ݕ = ݔܥ + ݑܦ
ݔ = ௦ݔ} ௦ݔ̇ ௔ଷݔ … ்{௔ேݔ

ݑ = ቄ௛೎
௕

௖ߙ ௖ቅߚ
்

    (17) 

 
Note that, even in the case of fully measurable 
ℎ, ℎ̇,ߙ, ,ߚ,ߙ̇  this is still an output feedback ,ߚ̇
problem, due to the presence of the augmented 
aerodynamic states. 
 
4.1 LQR control: motivational example 
To control the Goland’s wing through the 
deflection ߚ௖ of the trailing edge flap, an LQR 
output feedback has been designed. The open-
loop root locus gives an additional proof for the 
validation of the model. Goland’s wing, in fact, 
is supposed to flutter at ௙ܸ ≅  ,(Fig.5) ݏ/݉ 137

whereas the open-loop root locus gives ௙ܸ ≅
 Note that, however, the coupling of .ݏ/݉ 139
the flap dynamics with the plunge and pitch 
modes slightly reduces the flutter speed. This 
means that, under the hypothesis of an infinitely 
rigid trailing edge, the error between actual and 
calculated flutter speeds would be a little higher. 

 
Fig.5. Goland's wing Open-Loop Root Locus 

Setting the design airspeed at ௗܸ ≅  ,ݏ/݉ 150
the LQR optimal gains are evaluated, stabilizing 
the system which would have otherwise never 
been able to reach the imposed design speed. 
The closed loop response of the Goland’s wing 
to an impulse disturbance is shown in the 
simulation of Fig. 6. 

 
Fig.6. Goland’s wing impulse response in 

Closed Loop 

In what follows, robustness of this scheme is 
questioned. As shown by Bisplinghoff’s 
parametric study mentioned earlier on, 
parameter variation can dramatically affect 
flutter speed. A parameter change might be 
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simple due to a gradual degradation of the 
material characteristics or to a sudden structure 
failure, which leads, for example, to a reduction 
of the structure stiffness. It must be said that, 
when a parameter change leads to the reduction 
of the flutter speed, usually the control activity 
necessary to damp the oscillations at the same 
design speed becomes much more demanding. 
When control saturation is an issue, hence, even 
perfect knowledge of the new parameters would 
not allow the design of a stabilizing controller. 
In order to show the lack of robustness of a 
fixed-gain LQR scheme and the importance of 
tailoring the control system to the actual system 
parameters, even when they do not affect flutter 
speed and do not require greater control 
authority, a motivational example is shown. 
 

 Case A Case B 
߱௛ ݀ܽݎ]  ⁄ݏ ] 98 56 
߱ఈ ݀ܽݎ]  ⁄ݏ ] 100 
߱ఉ ݀ܽݎ]  ⁄ݏ ] 300 

 20 ߤ
ఏݔ  [݉] 0.3 
 ఏଶ [݉ଶ] 0.25ݎ

ܽ -0.4 
ܿ 0.6 

ܾ [݉] 1 
݃݇] ߩ ݉ଷ⁄ ] 1.225 
݉௕ ݉⁄  0.04 
ܵ௕ ܵ⁄  0.0178 
௕ܫ ⁄ܫ  0.002134 

 
Table 1. Parameter numerical values 

 
Case A of Table 1 can be considered the 
baseline, with Case B being the very same 
configuration after a failure. Such would be the 
case of, say, a wingbox with reduced flexural 
stiffness, with no side effects on torsional 
stiffness and on the shear center position. 
For both cases, the open-loop root loci are 
plotted with a maximum speed of ௗܸ ≅
 As every dot of Fig. 7 and 8 .ݏ/݉ 230
correspond to a speed increment of 5m/s, it is 
easy to deduce that both cases experienced 
flutter at ௙ܸ ≅  The root loci and the .ݏ/݉ 215
open-loop eigenvalues are, however, 
dramatically different. 

 
Fig.7. Case A Root Locus 

 
Fig.8 Case B Root Locus 

For both cases an optimal LQR controller was 
designed. Fig. 9 and 10 show how stabilization 
is reached with a comparable control effort. 

 
Fig.9. Case A CL impulse response 

Gains K=[206.03  75.14  104.50  -4.71   -0.83  0.51] 
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Fig.10. Case B CL impulse response 

Gains K=[71.01  149.98  74.60  -4.98  0.15  0.37] 
 
If, however, Case B is treated as a failure mode 
of Case A, and a simulation on the former is run 
using the controller for the latter, the closed-
loop dynamics becomes marginally unstable, as 
shown in Fig. 11. 
 

 
Fig.11: Case B CL impulse response 

Gains K=[206.03  75.14  104.50  -4.71   -0.83  0.51] 
 
The importance of parameter knowledge has 
been shown for this particular motivational 
example. 
 
A more interesting situation, however, is the 
already mentioned more general case, where 
parameter variation does indeed lead to flutter 
speed change. It can be shown that, assuming 
that the new parameters were know, tailoring 
the control system to the updated conditions 
would lead to a higher closed loop flutter speed, 

under the same control authority. This implies, 
however, the employment of an adaptive control 
architecture, able to accommodate at least a 
given set of open loop dynamic modifications. 
 
4.2 Adaptive Control architecture 
Application of an adaptive controller was 
therefore investigated. In any adaptive 
architecture, feedback gains are neither fixed 
nor scheduled. A state-dependent adaptive law 
provides time-varying feedback gains ߠ෠൫(ݐ)ݔ൯; 
the resulting control signal (being in the form 
(ݔ)ݑ = (ݔ)෠்ߠ ∙  .is inherently nonlinear ݔ
Ideally, in the Model Reference Adaptive 
Controller (MRAC) subclass, the feedback 
gains should converge to their ideal value ߠ෠∗ so 
that the closed loop system replicates the 
dynamics of a given reference model (as shown 
in Fig. 12 for the Direct MRAC) 
 

 
Fig.12. Direct MRAC 

An issue typically left unaddressed by adaptive 
architectures is the tradeoff between adaptation 
and robustness. That is, fast convergence of the 
plant to the stable reference model can be easily 
achieved by selecting high adaptive gains in the 
adaptation law (note that these gains are a fixed 
design parameter). But, generally speaking, high 
adaptive gains can result in high frequency 
control signals, clearly unachievable by a real-
world actuator due to its finite bandwidth, and 
arbitrarily bad transients (Ref. [26]), albeit 
asymptotic convergence is eventually achieved. 
On the other hand, selecting low adaptive gains 
allows for smoother control signals and 
transients, although tracking of the reference 
model is achieved only upon convergence of the 
feedback gains i.e. after a longer time, during 
which the system exhibits its own (unstable) 
dynamics. 
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Selection of a satisfactory value of the adaptive 
gains is a matter of trial-and-error tuning to each 
particular system. 
The ℒଵ class of MRAC controllers represents a 
recent development of the theory of adaptive 
control that circumvents this problem (Ref. [27-
28]). 
The key idea is to filter the control signal so that 
only achievable low-frequency signals are 
passed to the system, allowing higher adaptive 
gains to be adopted. The importance of this 
theory lies in the fact that it shows how the 
following objectives can be achieved by careful 
design of the lowpass filter : 

 Boundedness of the control signal 
amplitude 

 Boundedness of the tracking error 
 

 
Fig.13. ख૚ Adaptive Controller Outline 

 
Referring to of Fig.13, the State Predictor 
block, sometimes referred to as Passive 
Identifier, is in fact the stable reference system 
(whose state is ݔො ) to be replicated by the 
closed-loop system (i.e., ݔ must track ݔො ). 
Indeed, its dynamics do contain the plant state 
multiplied by the estimated feedback gains 
(dashed connection) but if it were not for the 
Lowpass Filter, substitution of the unfiltered 
control signal would cancel those terms out 
from the Passive Identifier differential equation, 
leaving only the stable reference system 
tracking the input ݎ with the assigned dynamics. 
In the so-called Passive Identifier based 
Reparameterization, represented in Fig.14, both 
the plant and the reference system are fed with 
the same signal ݑ (Fig.14), whereas in the dual 
case (i.e. Direct MRAC of Fig.12) the plant is 
fed with ݑ while the reference system is directly 
fed with ݎ. 

 
Fig. 14. Passive Identifier based 

reparameterization 

 
In absence of the Lowpass Filter, the two 
schemes are perfectly equivalent under the same 
stability proof. Stability can be addressed in two 
steps: 
 A Lyapunov-based stability proof for the 

tracking error between plant and reference 
system. This proof is not sufficient, though, 
as it only proves boundedness of the 
tracking error ݁, which could also occur 
with both systems drifting to infinity at the 
same rate. The adaptive law is defined at 
this stage. 

 Convergence proof for the reference system 
(by definition, since it has arbitrarily 
assigned stable dynamics). 

The only difference is that in the second 
scheme, it is only upon substitution of the 
control signal ݑ that the Passive Identifier 
collapses to the Reference System, and stability 
follows. 
In the ℒଵ scheme of Fig.12, the presence of the 
Lowpass Filter makes things quite different. If 
the Direct MRAC scheme were used, in fact, 
only the plant input would have been filtered, 
adding states to the augmented plant-plus-filter 
system. Therefore ݔ and ݔො would not have the 
same dimension, ݁ could not be defined and 
deriving a stabilizing adaptive law via a 
Lyapunov proof would be no longer possible. 
It is hence clear that the implementation of the 
Lowpass Filter forces the use of the Passive 
Identifier scheme. Since both the plant and the 
Passive Identifier are fed with the same control 
signal, ݑ cancels out in the error dynamics and 
the first step in the stability proof is left 
unchanged, regardless of the filtering. 
On the contrary, the second step takes a 
different approach. Filtering of the control 
signal means that inside the State Predictor 
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block, cancelation of the feedback gain and 
plant state terms does no longer take place. 
Stability of the Predictor can still be proven 
with the Small-Gain theorem (Ref. [29]), given 
that the Lowpass Filter satisfies certain 
necessary conditions stated during the proof. 
The aforementioned ℒஶ-norm bounds are also 
derived: they depend on the ℒଵ-norm of certain 
transfer function defined inside the closed-loop 
system, hence the name of the control 
architecture. The ℒଵ-norm of a transfer function 
is also known as the ℒஶ ℒஶ⁄ -induced norm of 
the system. 
It should be noticed that, apart from the 
capability of self-adjusting to unknown system 
parameters, ℒଵ controllers (just as any other 
adaptive controller implementing projection-
based adaptation) display another extremely 
useful feature, that is the disturbance rejection 
capability, which results in the boundedness of 
tracking error, even under the action of external 
disturbances, e.g. gust or signal noise.  
At the current stage of the In.A.Team project, 
application of the ℒଵ architecture to the active 
stabilization of a wing subject to aeroelastic 
phenomena is still under investigation, even for 
the simplest case of the 2-D model previously 
discussed. Nevertheless, some words can be 
spent on the characterization of the problem. As 
it was mentioned earlier on, in fact, all MRAC 
schemes involve the arbitrary choice of a stable 
reference model defined via its Hurwitz state 
matrix ܣ௠. The whole subsequent theory relies 
on the assumption that there exists an ideal 
feedback gain matrix (for a scalar control signal, 
the vector ߠ∗ mentioned earlier on) such that the 
closed loop system replicates the reference 
model. If the plant were known, it would be 
easy to determine ߠ∗. Adaptive control, though, 
is required precisely to deal with the plant 
uncertainties. Knowledge of ߠ∗, anyway, is not 
required; otherwise, there would be no need for 
an adaptive law. Only its existence is assumed, 
a condition trivially satisfied in the case of 
scalar ݔ. In all other cases, the so-called 
matching assumption is formulated. That is, 
given the open-loop system: 
 

(ݐ)ݔ̇ = (ݐ)ݔܣ +  (18) (ݐ)ݑܾ
 

and a reference model 
 

(ݐ)௠ݔ̇ = (ݐ)௠ݔ௠ܣ + ܾ௠(19)  (ݐ)ݎ 
 
then there exists a feedback control signal: 
 

(ݐ)ݑ = (ݐ)ݔ∗௫ߠ +  (20)  (ݐ)ݎ∗௥ߠ
 
such that the original system of Eq.(18) mimics 
the reference model of Eq. (19). That is, 
 

:∗௫ߠ ∃ ܣ + ∗௫ߠܾ = ௠ܣ
:∗௥ߠ ∃ ∗௥ߠܾ = ܾ௠

 (21) 

 
In a nutshell, the matching assumptions require 
that the uncertainties are factored by the 
system’s control matrix ܾ. The uncertainties are 
defined in terms of the difference between the 
actual system matrices and the reference model 
matrices – but since the former is unknown, the 
latter cannot be chosen in order to satisfy Eq. 
(21).  
Unless the control actuation method is such that 
ܾ can factor any uncertainty, the matching 
assumptions are typically not satisfied by a real-
world dynamic system. 
The previously discussed 2-D, 3-Degrees-of-
freedom flutter model featuring the trailing edge 
flap as the only effector represents an 
unmatched uncertainties problem. If the flap is 
removed (2-DoF left) and actuation is achieved 
through an array of piezo patches layered as to 
independently control both bending and torsion, 
the resulting system falls back into the matched 
uncertainties class of problems and can be 
solved with the current theory. As in a typical 
wing, trailing edge control surfaces are however 
present, the third degree of freedom cannot 
usually be removed from the model. Interlacing 
the ℒଵ flutter control system with the flight 
control system to use both the piezo patches 
array and the flap as actuators might be required 
if the system has to be treated as a matched 
uncertainty problem. 
The latest developments in ℒଵ control theory 
(Ref. [30]) allow solution of the unmatched 
uncertainties case too, even though the adaptive 
laws used are derived in a different way. An ℒଵ 
adaptive controller for systems with unmatched 
uncertainties with classic gradient-based 
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adaptive laws derived through conventional 
Lyapunov design is currently under 
development by the same authors, and would be 
the perfect candidate architecture for flutter 
active control. 

5 Conclusions 
The main objective of the In.A.Team group at 
Politecnico di Torino, Italy is the development 
of simple analytical methods which can be used 
for estimation of main factors contributing to 
the occurrence of different critical and 
supercritical behaviour of next generation of 
innovative aircrafts. A range of structural 
models for aeroelastic analysis of composite 
high aspect ratio wing configurations are 
discussed in this paper and proposed for a 
subsequent control systems design. A simple 3 
D.o.F aero-servo-elastic model has been 
introduced and classical open loop flutter 
velocity is determined according to Goland’s 
wing case.  
A linear quadratic regulator (LQR) control 
strategy has been tested and some limits have 
been highlighted especially in presence of 
gradually or instantaneous degradation of the 
structural bending stiffness.  
The preliminary analysis shows how the 
introduction of an adaptive control system could 
be a preferred solution when the system 
becomes very sensitive to model parameter 
uncertainties. A preliminary architecture of the 
advanced control strategy is presented as a basis 
for future development. 
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