10,136 research outputs found

    Substructure procedure for including tile flexibility in stress analysis of shuttle thermal protection system

    Get PDF
    A substructure procedure to include the flexibility of the tile in the stress analysis of the shuttle thermal protection system (TPS) is described. In this procedure, the TPS is divided into substructures of (1) the tile which is modeled by linear finite elements and (2) the SIP which is modeled as a nonlinear continuum. This procedure was applied for loading cases of uniform pressure, uniform moment, and an aerodynamic shock on various tile thicknesses. The ratios of through-the-thickness stresses in the SIP which were calculated using a flexible tile compared to using a rigid tile were found to be less than 1.05 for the cases considered

    Equivalent plate analysis of aircraft wing box structures with general planform geometry

    Get PDF
    A new equilvalent plate analysis formulation is described which is capable of modeling aircraft wing structures with a general planform such as cranked wing boxes. Multiple trapezoidal segments are used to represent such planforms. A Ritz solution technique is used in conjunction with global displacement functions which encompass all the segments. This Ritz solution procedure is implemented efficiently into a computer program so that it can be used by rigorous optimization algorithms for application in early preliminary design. A direct method to interface this structural analysis procedure with aerodynamic programs for use in aeroelastic calculations is described. This equivalent plate analysis procedure is used to calculate the static deflections and stresses and vibration frequencies and modes of an example wing configuration. The numerical results are compared with results from a finite element model of the same configuration to illustrate typical levels of accuracy and computation times resulting from use of this procedure

    Computer-aided methods for analysis and synthesis of supersonic cruise aircraft structures

    Get PDF
    Computer-aided methods are reviewed which are being developed by Langley Research Center in-house work and by related grants and contracts. Synthesis methods to size structural members to meet strength and stiffness (flutter) requirements are emphasized and described. Because of the strong interaction among the aerodynamic loads, structural stiffness, and member sizes of supersonic cruise aircraft structures, these methods are combined into systems of computer programs to perform design studies. The approaches used in organizing these systems to provide efficiency, flexibility of use in an iterative process, and ease of system modification are discussed

    Computer program for nonlinear static stress analysis of shuttle thermal protection system: User's manual

    Get PDF
    User documentation is presented for a computer program which considers the nonlinear properties of the strain isolator pad (SIP) in the static stress analysis of the shuttle thermal protection system. This program is generalized to handle an arbitrary SIP footprint including cutouts for instrumentation and filler bar. Multiple SIP surfaces are defined to model tiles in unique locations such as leading edges, intersections, and penetrations. The nonlinearity of the SIP is characterized by experimental stress displacement data for both normal and shear behavior. Stresses in the SIP are calculated using a Newton iteration procedure to determine the six rigid body displacements of the tile which develop reaction forces in the SIP to equilibrate the externally applied loads. This user documentation gives an overview of the analysis capabilities, a detailed description of required input data and an example to illustrate use of the program
    corecore