16 research outputs found

    Nephroprotective effects of enalapril after [177Lu]-DOTATATE therapy using serial renal scintigraphies in a murine model of radiation-induced nephropathy

    Get PDF
    Background: Radiation-induced nephropathy is still dose limiting in radionuclide therapy of neuroendocrine tumors. We investigated the nephroprotective potential of the angiotensine converting enzyme inhibiting drug enalpril after [177Lu]-DOTATATE therapy in a murine model of radiation-induced nephropathy by renal scintigraphy. At first, the appropriate therapy activity to induce nephropathy was identified. Baseline scintigraphy (n = 12) entailed 12-min dynamic acquisitions after injection of 25 MBq [99mTc]-MAG3, which was followed by radionuclide therapy at four escalating activities of [177Lu]-DOTATATE: group (Gp) 1: 10 MBq;Gp 2: 20 MBq;Gp 3: 40 MBq;Gp 4: 65 MBq. Follow-up [99mTc]-MAG3 scintigraphy was carried out at days 9, 23, 44, and 65. The treatment activity for the intervention arm was selected on the basis of histological examination and declining renal function. In the second part, daily administration by gavage of 10 mg/kg/d enalapril or water (control group) was initiated on the day of radionuclide therapy. Follow-up scintigraphy was carried out at days 9, 23, 44, 65, and 86. We also created a non-therapy control group to detect therapy-independent changes of renal function over time. For all scintigraphies, mean renogram curves were analyzed and the "fractional uptake rate" (FUR;%I.D./min +/- SEM) of the tracer by the kidneys was calculated as an index of renal clearance. Results: At day 65 of follow-up, no significant change in the FUR relative to baseline (11.0 +/- 0.3) was evident in radionuclide therapy groups 1 (11.2 +/- 0.5) and 2 (10.1 +/- 0.6), but FUR was significantly reduced in groups 3 (8.93 +/- 0.6, p < 0.05) and 4 (6.0 +/- 0.8, p < 0.01);we chose 40 MBq [177Lu]-DOTATATE (Gp 3) for the intervention study. Here, at the last day of follow-up (day 86), FUR was unaltered in enalapril-treated mice (11.8 +/- 0.5) relative to the baseline group (12.4 +/- 0.3) and non-therapy group (11.9 +/- 0.8), whereas FUR in the control group had undergone a significant decline (9.3 +/- 0.5;p < 0.01). Histological examination revealed prevention of kidney damage by enalapril treatment. Conclusions: Treatment with enalapril is effective for nephroprotection during radionuclide therapy with [177Lu]-DOTATATE in mice. Although these results are only limitedly transferable to human studies, enalapril might serve as a promising drug in the mitigation of nephropathy following treatment with [177Lu]-DOTATATE

    Monitoring of Tumor Growth with [F-18]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches

    Get PDF
    Noninvasive tumor growth monitoring is of particular interest for the evaluation of experimental glioma therapies. This study investigates the potential of positron emission tomography (PET) using O-(2-F-18-fluoroethyl)-L-tyrosine ([F-18]-FET) to determine tumor growth in a murine glioblastoma (GBM) model including estimation of the biological tumor volume (BTV), which has hitherto not been investigated in the pre-clinical context. Fifteen GBM bearing mice (GL261) and six control mice (shams) were investigated during 5 weeks by PET followed by autoradiographic and histological assessments. [F-18]-FET PET was quantitated by calculation of maximum and mean standardized uptake values within a universal volume-of-interest (VOI) corrected for healthy background (SUVmax/BG, SUVmean/BG). A partial volume effect correction (PVEC) was applied in comparison to ex vivo autoradiography. BTVs obtained by predefined thresholds for VOI definition (SUV/BG: >= 1.4;>= 1.6;>= 1.8;>= 2.0) were compared to the histologically assessed tumor volume (n = 8). Finally, individual-optimal" thresholds for BTV definition best reflecting the histology were determined. In GBM mice SUVmax/BG and SUVmean/BG clearly increased with time, however at high inter-animal variability. No relevant [F-18]-FET uptake was observed in shams. PVEC recovered signal loss of SUVmean/BG assessment in relation to autoradiography. BTV as estimated by predefined thresholds strongly differed from the histology volume. Strikingly, the individual "optimal" thresholds for BTV assessment correlated highly with SUVmax/BG (rho = 0.97, p < 0.001), allowing SUVmax/BG-based calculation of individual thresholds. The method was verified by a subsequent validation study (n = 15, p = 0.88, p < 0.01) leading to extensively higher agreement of BTV estimations when compared to histology in contrast to predefined thresholds. [F-18]-FET PET with standard SUV measurements is feasible for glioma imaging in the GBM mouse model. PVEC is beneficial to improve accuracy of [F-18]-FET PET SUV quantification. Although SUVmax/BG and SUVmean/BG increase during the disease course, these parameters do not correlate with the respective tumor size. For the first time, we propose a histology-verified method allowing appropriate individual BTV estimation for volumetric in vivo monitoring of tumor growth with [F-18]-FET PET and show that standardized thresholds from routine clinical practice seem to be inappropriate for BTV estimation in the GBM mouse model

    Preliminary experience with dosimetry, response and patient reported outcome after Lu-177-PSMA-617 therapy for metastatic castration-resistant prostate cancer

    Get PDF
    Prostate cancer can be targeted by ligands to the prostate-specific membrane antigen (PSMA). We aimed to evaluate dosimetry, safety and efficacy of Lu-177-PSMA- 617 radioligand therapy (RLT) in patients with metastatic castration-resistant prostate cancer (mCRPC). Fifteen patients each received two cycles of 3.7 GBq (n = 5) or 6.0 GBq (n = 10) 177Lu-PSMA-617 at an eight to ten weeks interval. For safety monitoring, each treatment was followed by dosimetry with serial quantitative SPECT as well as inpatient and outpatient recording of adverse events. Response to RLT was primarily determined by baseline to follow-up change in Ga-68-PSMA PET/CT (RECIST1.1), as well as change in prostate-specific antigen (PSA), quality of life (QoL, FACT-P scale), and pain (Brief Pain Inventory) as secondary endpoints. Radiation dose delivered to the tumor (6.1 Gy/GBq) was six to twelve-fold higher than to critical organs (kidney left/right 0.5/0.6 Gy/GBq each, salivary glands 1.0 Gy/GBq). Total radiation dose per kidney did not exceed 23 Gy in any patient. Three patients had sub-acute and latent grade 3 events, i.e. anemia, leukocytopenia, and nausea. No acute events, grade >= 4 events or high grade events for salivary gland or kidney function were observed. After two RLT cycles, 4 (27%) patients had partial response, 6 (40%) had stable disease, and 5 (33%) had progressive disease according to RECIST. Any PSA decline was observed in 12/15 (80%) patients during RLT. Significant pain relief was documented in 7/10 (70%) symptomatic patients and QoL improved in 9/15 (60%) patients. Lu-177-PSMA-617 therapy proved safe and indicated promising response rates for both objective and patient-reported outcomes in our small group of mCRPC patients

    68Ga-EMP-100 PET/CT-a novel ligand for visualizing c-MET expression in metastatic renal cell carcinoma-first in-human biodistribution and imaging results

    Get PDF
    BACKGROUND 68Ga-EMP-100 is a novel positron emission tomography (PET) ligand that directly targets tumoral c-MET expression. Upregulation of the receptor tyrosin kinase c-MET in renal cell carcinoma (RCC) is correlated with overall survival in metastatic disease (mRCC). Clinicopathological staging of c-MET expression could improve patient management prior to systemic therapy with for instance inhibitors targeting c-MET such as cabozantinib. We present the first in-human data of 68Ga-EMP-100 in mRCC patients evaluating uptake characteristics in metastases and primary RCC. METHODS Twelve patients with mRCC prior to anticipated cabozantinib therapy underwent 68Ga-EMP-100 PET/CT imaging. We compared the biodistribution in normal organs and tumor uptake of mRCC lesions by standard uptake value (SUVmean) and SUVmax measurements. Additionally, metastatic sites on PET were compared to contrast-enhanced computed tomography (CT) and the respective, quantitative PET parameters were assessed and then compared inter- and intra-individually. RESULTS Overall, 87 tumor lesions were analyzed. Of these, 68/87 (79.3%) were visually rated c-MET-positive comprising a median SUVmax of 4.35 and SUVmean of 2.52. Comparing different tumor sites, the highest uptake intensity was found in tumor burden at the primary site (SUVmax 9.05 (4.86-29.16)), followed by bone metastases (SUVmax 5.56 (0.97-15.85)), and lymph node metastases (SUVmax 3.90 (2.13-6.28)) and visceral metastases (SUVmax 3.82 (0.11-16.18)). The occurrence of visually PET-negative lesions (20.7%) was distributed heterogeneously on an intra- and inter-individual level; the largest proportion of PET-negative metastatic lesions were lung and liver metastases. The highest physiological 68Ga-EMP-100 accumulation besides the urinary bladder content was seen in the kidneys, followed by moderate uptake in the liver and the spleen, whereas significantly lower uptake intensity was observed in the pancreas and the intestines. CONCLUSION Targeting c-MET expression, 68Ga-EMP-100 shows distinctly elevated uptake in mRCC patients with partially high inter- and intra-individual differences comprising both c-MET-positive and c-MET-negative lesions. Our first clinical results warrant further systemic studies investigating the clinical use of 68Ga-EMP-100 as a biomarker in mRCC patients

    Total Tumor Volume on 18F-PSMA-1007 PET as Additional Imaging Biomarker in mCRPC Patients Undergoing PSMA-Targeted Alpha Therapy with 225Ac-PSMA-I&amp;T

    No full text
    Background: PSMA-based alpha therapy using 225Ac-PSMA-I&amp;T provides treatment for metastatic castration-resistant prostate cancer (mCRPC), even after the failure of 177Lu-PSMA radioligand therapy (RLT). In clinical routine, the total tumor volume (TTV) on PSMA PET impacts therapy outcomes and plays an increasing role in mCRPC patients. Hence, we aimed to assess TTV and its changes during 225Ac-PSMA-I&amp;T RLT. Methods: mCRPC patients undergoing RLT with 225Ac-PSMA-I&amp;T with available 18F-PSMA-1007 PET/CT prior to therapy initiation were included. TTV was assessed in all patients using established cut-off values. Image derived, clinical and biochemistry parameters (PSA, LDH, AP, pain score) were analyzed prior to and after two cycles of 225Ac-PSMA. Changes in TTV and further parameters were directly compared and then correlated with established response criteria, such as RECIST 1.1 or mPERCIST. Results: 13 mCRPC patients were included. The median overall survival (OS) was 10 months. Prior to 225Ac-PSMA RLT, there was no significant correlation between TTV with other clinical parameters (p &gt; 0.05 each). Between short-term survivors (STS, &lt;10 months OS) and long-term survivors (LTS, &ge;10 months OS), TTV and PSA were comparable (p = 0.592 &amp; p = 0.286, respectively), whereas AP was significantly lower in the LTS (p = 0.029). A total of 7/13 patients completed two cycles and underwent a follow-up 18F-PSMA-1007 PET/CT. Among these patients, there was a significant decrease in TTV (median 835 vs. 201 mL, p = 0.028) and PSA (median 687 ng/dL vs. 178 ng/dL, p = 0.018) after two cycles of 225Ac-PSMA RLT. Here, percentage changes of TTV after two cycles showed no direct correlation to all other clinical parameters (p &gt; 0.05 each). In two patients, new PET-avid lesions were detected on 18F-PSMA-1007 PET/CT. However, TTV and PSA were decreasing or stable. Conclusion: PET-derived assessment of TTV is an easily applicable imaging biomarker independent of other established parameters prior to 225Ac-PSMA RLT in these preliminary follow-up data. Even after the failure of 177Lu-PSMA, patients with extensive TTV seem to profit from RLT. All but one patient who was eligible for &ge;2 cycles of 225Ac-PSMA-RLT demonstrated drastic TTV decreases without direct correlation to other biomarkers, such as serum PSA changes. Changes in TTV might hence improve the response assessment compared to standard classifiers by reflecting the current tumor load independent of the occurrence of new lesions
    corecore