2,543 research outputs found

    Efficient Parity Encoded Optical Quantum Computing

    Get PDF
    We present a linear optics quantum computation scheme with a greatly reduced cost in resources compared to KLM. The scheme makes use of elements from cluster state computation and achieves comparable resource usage to those schemes while retaining the circuit based approach of KLM

    Loss-tolerant operations in parity-code linear optics quantum computing

    Get PDF
    A heavy focus for optical quantum computing is the introduction of error-correction, and the minimisation of resource requirements. We detail a complete encoding and manipulation scheme designed for linear optics quantum computing, incorporating scalable operations and loss-tolerant architecture.Comment: 8 pages, 6 figure

    Loss Tolerant Optical Qubits

    Get PDF
    We present a linear optics quantum computation scheme that employs a new encoding approach that incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but uses techniques from cluster state computation and achieves comparable resource usage. To illustrate our techniques we describe a quantum memory which is fault tolerant to photon loss

    Aging in K1x_{1-x}Lix_xTa03_3: a domain growth interpretation

    Full text link
    The aging behaviour of the a.c. susceptibility of randomly substituted K1x_{1-x}Lix_xTa03_3 crystals reveals marked differences with spin-glasses in that cooling rate effects are very important. The response to temperature steps (including temperature cycles) was carefully studied. A model based on thermally activated domain growth accounts for all the experimental results, provided one allows for a large distribution of pinning energies, in such a way that `slow' and `fast' domains coexist. Interesting similarities with deeply supercooled liquids are underlined.Comment: 4 pages. Preprint LPTENS/9820, submitted to Phys. Rev. Let

    Quantum process tomography of a controlled-NOT gate

    Get PDF
    We demonstrate complete characterization of a two-qubit entangling process - a linear optics controlled-NOT gate operating with coincident detection - by quantum process tomography. We use maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows accurate prediction of the operation of the gate for arbitrary input states, and calculation of gate performance measures such as the average gate fidelity, average purity and entangling capability of our gate, which are 0.90, 0.83 and 0.73, respectively.Comment: 4 pages, 2 figures. v2 contains new data corresponding to improved gate operation. Figure quality slightly reduced for arXi

    Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins

    Get PDF
    © The Company of Biologists Ltd 2005Paracrine factors secreted by the oocyte regulate a broad range of cumulus cell functions. Characteristically, cumulus cells have a low incidence of apoptosis and we proposed that this is due to oocyte-secreted factors acting in an anti-apoptotic manner. Bovine cumulus-oocyte complexes (COC) were aspirated from abattoir-derived ovaries and oocytectomized (OOX) by microsurgical removal of the oocyte. OOX were treated with doses of either denuded oocytes (DO) or various growth factors for 24 hours (± rFSH; 0.1 IU/ml). Proportions of apoptotic cumulus cells were assessed using TUNEL and laser confocal scanning microscopy followed by image analysis. Quantification of Bcl-2 and Bax proteins in OOX was undertaken by western analysis. Oocyte removal led to a significant increase in cumulus cell apoptosis compared with COC controls (35% versus 9% TUNEL positive, respectively; P<0.001). Levels of OOX apoptosis were significantly reversed (P<0.001) in a dose-dependent manner when co-cultured with oocytes. Furthermore, the anti-apoptotic effect of oocyte-secreted factors followed a gradient from the site of the oocyte(s). Growth differentiation factor 9 (GDF9) had no significant effect on cumulus cell apoptosis. By contrast, cumulus cell apoptosis was significantly (P<0.001) reduced by bone morphogenetic proteins (BMP) 15, 6 or 7. Accordingly, levels of antiapoptotic Bcl-2 were high in OOX+DO and OOX+BMP15 and low with OOX+GDF9 or OOX alone, whereas the reverse was observed for pro-apoptotic Bax. DO, BMP15 and BMP6 were also able to protect cumulus cells from undergoing apoptosis induced by staurosporine. FSH partially prevented apoptosis in all treatment groups (P<0.001). Follistatin and a BMP6 neutralizing antibody, which antagonized the anti-apoptotic effects of BMP15 and BMP6, respectively, whether alone or combined, blocked ~50% of the anti-apoptotic actions of oocytes. These results are the first to demonstrate that oocyte-secreted factors, and particularly BMP15 and BMP6, maintain the low incidence of cumulus cell apoptosis by establishing a localized gradient of bone morphogenetic proteins.Tamer S. Hussein, David A. Froiland, Fred Amato, Jeremy G. Thompson and Robert B

    The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs

    Get PDF
    Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information

    Experimental demonstration of Shor's algorithm with quantum entanglement

    Get PDF
    Shor's powerful quantum algorithm for factoring represents a major challenge in quantum computation and its full realization will have a large impact on modern cryptography. Here we implement a compiled version of Shor's algorithm in a photonic system using single photons and employing the non-linearity induced by measurement. For the first time we demonstrate the core processes, coherent control, and resultant entangled states that are required in a full-scale implementation of Shor's algorithm. Demonstration of these processes is a necessary step on the path towards a full implementation of Shor's algorithm and scalable quantum computing. Our results highlight that the performance of a quantum algorithm is not the same as performance of the underlying quantum circuit, and stress the importance of developing techniques for characterising quantum algorithms.Comment: 4 pages, 5 figures + half-page additional online materia

    Visual search in ecological and non-ecological displays: Evidence for a non-monotonic effect of complexity on performance

    Get PDF
    Copyright @ 2013 PLoSThis article has been made available through the Brunel Open Access Publishing Fund.Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with ecologically valid stimuli, a “pop out” effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.This study is funded by Brunel University and the article is made available through the Brunel Open Access Publishing Fund

    How to simulate a quantum computer using negative probabilities

    Full text link
    The concept of negative probabilities can be used to decompose the interaction of two qubits mediated by a quantum controlled-NOT into three operations that require only classical interactions (that is, local operations and classical communication) between the qubits. For a single gate, the probabilities of the three operations are 1, 1, and -1. This decomposition can be applied in a probabilistic simulation of quantum computation by randomly choosing one of the three operations for each gate and assigning a negative statistical weight to the outcomes of sequences with an odd number of negative probability operations. The exponential speed-up of a quantum computer can then be evaluated in terms of the increase in the number of sequences needed to simulate a single operation of the quantum circuit.Comment: 11 pages, including one figure and one table. Full paper version for publication in Journal of Physics A. Clarifications of basic concepts and discussions of possible implications have been adde
    corecore