25 research outputs found
Organometallic palladium reagents for cysteine bioconjugation
Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody–drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.National Institutes of Health (U.S.) (GM-58160)National Institutes of Health (U.S.) (GM-101762)MIT Faculty Start-up FundDamon Runyon Cancer Research FoundationSontag Foundation (Distinguished Scientist Award)Massachusetts Institute of Technology. Dept. of Chemistry (George Buchi Research Fellowship)David H. Koch Institute for Integrative Cancer Research at MIT (Graduate Fellowship in Cancer Research
Discovery of High-Affinity Protein Binding Ligands – Backwards
BACKGROUND: There is a pressing need for high-affinity protein binding ligands for all proteins in the human and other proteomes. Numerous groups are working to develop protein binding ligands but most approaches develop ligands using the same strategy in which a large library of structured ligands is screened against a protein target to identify a high-affinity ligand for the target. While this methodology generates high-affinity ligands for the target, it is generally an iterative process that can be difficult to adapt for the generation of ligands for large numbers of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a class of peptide-based protein ligands, called synbodies, which allow this process to be run backwards--i.e. make a synbody and then screen it against a library of proteins to discover the target. By screening a synbody against an array of 8,000 human proteins, we can identify which protein in the library binds the synbody with high affinity. We used this method to develop a high-affinity synbody that specifically binds AKT1 with a K(d)<5 nM. It was found that the peptides that compose the synbody bind AKT1 with low micromolar affinity, implying that the affinity and specificity is a product of the bivalent interaction of the synbody with AKT1. We developed a synbody for another protein, ABL1 using the same method. CONCLUSIONS/SIGNIFICANCE: This method delivered a high-affinity ligand for a target protein in a single discovery step. This is in contrast to other techniques that require subsequent rounds of mutational improvement to yield nanomolar ligands. As this technique is easily scalable, we believe that it could be possible to develop ligands to all the proteins in any proteome using this approach
SIMS: A Hybrid Method for Rapid Conformational Analysis
Proteins are at the root of many biological functions, often performing complex tasks as the result of large changes in their
structure. Describing the exact details of these conformational changes, however, remains a central challenge for
computational biology due the enormous computational requirements of the problem. This has engendered the
development of a rich variety of useful methods designed to answer specific questions at different levels of spatial,
temporal, and energetic resolution. These methods fall largely into two classes: physically accurate, but computationally
demanding methods and fast, approximate methods. We introduce here a new hybrid modeling tool, the Structured
Intuitive Move Selector (SIMS), designed to bridge the divide between these two classes, while allowing the benefits of both
to be seamlessly integrated into a single framework. This is achieved by applying a modern motion planning algorithm,
borrowed from the field of robotics, in tandem with a well-established protein modeling library. SIMS can combine precise
energy calculations with approximate or specialized conformational sampling routines to produce rapid, yet accurate,
analysis of the large-scale conformational variability of protein systems. Several key advancements are shown, including the
abstract use of generically defined moves (conformational sampling methods) and an expansive probabilistic
conformational exploration. We present three example problems that SIMS is applied to and demonstrate a rapid solution
for each. These include the automatic determination of ムムactiveメメ residues for the hinge-based system Cyanovirin-N,
exploring conformational changes involving long-range coordinated motion between non-sequential residues in Ribose-
Binding Protein, and the rapid discovery of a transient conformational state of Maltose-Binding Protein, previously only
determined by Molecular Dynamics. For all cases we provide energetic validations using well-established energy fields,
demonstrating this framework as a fast and accurate tool for the analysis of a wide range of protein flexibility problems