26 research outputs found

    Polymorphisms in GSTM1, GSTT1, GSTP1, and GSTM3 genes and breast cancer risk in northeastern Mexico : Short Communication

    Get PDF
    Glutathione S-transferases (GSTs) are a family of phase II metabolizing enzymes involved in carcinogen detoxification and the metabolism of various bioactive compounds. Several genes that code for these enzymes are polymorphic in an ethnicity-dependent manner, with particular genotypes previously associated with an increased risk of breast cancer. The purpose of this study was to determine the frequencies of polymorphisms in the genes GSTM1, GSTT1, GSTP1, and GSTM3 and to investigate whether an association exists between these genes and breast cancer risk in subjects from northeastern Mexico. Genotypes were determined for 243 women with histologically confirmed breast cancer and 118 control subjects. Gene polymorphisms were analyzed using a DNA microarray. We found an increased breast cancer risk associated with the GSTM1 gene deletion polymorphism (OR = 2.19; 95%CI = 1.50-3.21; P = 0.001). No associations between the GSTT1, GSTP1, and GSTM3 genotypes and neoplasia risk were observed. In conclusion, we determined the genotype distribution of GST polymorphisms in control subjects and breast cancer patients from northeastern Mexico. The GSTM1 null genotype was associated with breast cancer risk. Our findings may be used to individualize breast cancer screening and therapeutic intervention in our population, which displays ethnic characteristics that differentiate it from other populations in Mexico

    Chondrocyte Turnover in Lung Cartilage

    Get PDF
    Cartilage is a highly differentiated connective tissue that forms mechanical support to soft tissues and is important for bone development from fetal period to puberty. It is conformed by chondrocytes and extracellular matrix. It is generally believed that adult cartilage has no capacity to renewal. A delicate balance between cell proliferation and cell death ensures the maintenance of normal tissue morphology and function. Stem cells play essential roles in this process. Mesenchymal stem cells (MSCs) can give rise to multiple lineages including bone, adipose and cartilage. Nestin protein was initially identified as a marker for neural stem cells, but its expression has also been detected in many types of cells, including MSCs. In vivo, chondrocyte turnover has been almost exclusively studied in articular cartilage. In this chapter we will review the findings about the chondrocyte turnover in lung cartilage. We have presented evidence that there exist nestin-positive MSCs in healthy adulthood that participates in the turnover of lung cartilage and in lung airway epithelium renewal. These findings may improve our knowledge about the biology of the cartilage and of the stem cells, and could provide new cell candidates for cartilage tissue engineering and for therapy for devastating pulmonary diseases
    corecore