6,129 research outputs found

    Nonlinear control of an industrial robot

    Get PDF
    The precise control of a robot manipulator travelling at high speed constitutes a major research challenge. This is due to the nonlinear nature of the dynamics of the arm which make many traditional, linear control methodologies inappropriate. An alternative approach is to adopt controllers which are themselves nonlinear. Variable structure control systems provide the possibility of imposing dynamic characteristics upon a poorly modelled and time varying system by means of a discontinuous control signal. The basic algorithm overcomes some nonlinear effects but is sensitive to Coulomb friction andactuator saturation. By augmenting this controller with compensation terms, these effects may largely be eliminated.In order to investigate these ideas, a number of variable structure control systems ~re applied to a low cost industrial robot having a highly nonlinear and flexible drive system. By a combination of hardware enhancements and control system developments, an improvement in speed by a factor of approximately three was achieved while the trajectory tracking accuracy was improved by a factor of ten, compared with the manufacturer's control system.In order to achieve these improvements, it was necessary to develop a dynamic model of the arm including the effects of drive system flexibility and nonlinearities. The development of this model is reported in this thesis, as is work carried out on a comparison of numerical algorithms for the solution of differential equations with discontinuous right hand sides, required in the computer aided design of variable structure control systems

    Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R = 20 kpc

    Full text link
    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10-m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R = 20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality -- a primary peak centered at v = -513 km/s and a secondary one at v = -417 km/s -- along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of sigma(v) = 16 km/s. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: [Fe/H] = -0.45 and sigma([Fe/H]) = 0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent: (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; (3) a warp or overdensity in M31's disk at R > 50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile).Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap

    The Metal-Poor Halo of the Andromeda Spiral Galaxy (M31)

    Get PDF
    We present spectroscopic observations of red giant branch (RGB) stars over a large expanse in the halo of the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10-m telescope. Using a combination of five photometric/spectroscopic diagnostics -- (1) radial velocity, (2) intermediate-width DDO51 photometry, (3) Na I equivalent width (surface gravity sensitive), (4) position in the color-magnitude diagram, and (5) comparison between photometric and spectroscopic [Fe/H] estimates -- we isolate over 250 bona fide M31 bulge and halo RGB stars located in twelve fields ranging from R = 12-165kpc from the center of M31 (47 of these stars are halo members with R > 60 kpc). We derive the photometric and spectroscopic metallicity distribution function of M31 RGB stars in each of these fields. The mean of the resulting M31 spheroid (bulge and halo) metallicity distribution is found to be systematically more metal-poor with increasing radius, shifting from = -0.47+/-0.03 (sigma = 0.39) at R = -0.94+/-0.06 (sigma = 0.60) at R ~ 30 kpc to = -1.26+/-0.10 (sigma = 0.72) at R > 60 kpc, assuming [alpha/Fe] = 0.0. These results indicate the presence of a metal-poor RGB population at large radial distances out to at least R = 160 kpc, thereby supporting our recent discovery of a stellar halo in M31: its halo and bulge (defined as the structural components with R^{-2} power law and de Vaucouleurs R^{1/4} law surface brightness profiles, respectively) are shown to have distinct metallicity distributions. If we assume an alpha-enhancement of [alpha/Fe] = +0.3 for M31's halo, we derive = -1.5+/-0.1 (sigma = 0.7). Therefore, the mean metallicity and metallicity spread of this newly found remote M31 RGB population are similar to those of the Milky Way halo.Comment: Accepted for publication in ApJ on May 4th, 2006 (submitted on Jan 30, 2006). 16 pages, 13 figures, 3 table

    Clustering-Based Online Player Modeling

    Get PDF
    Being able to imitate individual players in a game can benefit game development by providing a means to create a variety of autonomous agents and aid understanding of which aspects of game states influence game-play. This paper presents a clustering and locally weighted regression method for modeling and imitating individual players. The algorithm first learns a generic player cluster model that is updated online to capture an individual’s game-play tendencies. The models can then be used to play the game or for analysis to identify how different players react to separate aspects of game states. The method is demonstrated on a tablet-based trajectory generation game called Space Navigator

    A Function-to-Task Process Model for Adaptive Automation System Design

    Get PDF
    Adaptive automation systems allow the user to complete a task seamlessly with a computer performing tasks at which the human operator struggles. Unlike traditional systems that allocate functions to either the human or the machine, adaptive automation varies the allocation of functions during system operation. Creating these systems requires designers to consider issues not present during static system development. To assist in adaptive automation system design, this paper presents the concept of inherent tasks and takes advantage of this concept to create the function-to-task design process model. This process model helps the designer determine how to allocate functions to the human, machine, or dynamically between the two. An illustration of the process demonstrates the potential complexity within adaptive automation systems and how the process model aids in understanding this complexity during early stage design

    DNA Extraction from Dry Museum Beetles without Conferring External Morphological Damage

    Get PDF
    BACKGROUND: A large number of dry-preserved insect specimens exist in collections around the world that might be useful for genetic analyses. However, until now, the recovery of nucleic acids from such specimens has involved at least the partial destruction of the specimen. This is clearly undesirable when dealing with rare species or otherwise important specimens, such as type specimens. METHODOLOGY: We describe a method for the extraction of PCR-amplifiable mitochondrial and nuclear DNA from dry insects without causing external morphological damage. Using PCR to amplify ≈220 bp of the mitochondrial gene cytochrome c oxidase I, and 250–345 bp fragments of the multi-copy, nuclear 28s ribosomal DNA gene, we demonstrate the efficacy of this method on beetles collected up to 50 years ago. CONCLUSIONS: This method offers a means of obtaining useful genetic information from rare insects without conferring external morphological damage

    Insider Threat Detection using Virtual Machine Introspection

    Get PDF
    This paper presents a methodology for signaling potentially malicious insider behavior using virtual machine introspection (VMI). VMI provides a novel means to detect potential malicious insiders because the introspection tools remain transparent and inaccessible to the guest and are extremely difficult to subvert. This research develops a four step methodology for development and validation of malicious insider threat alerting using VMI. A malicious attacker taxonomy is used to decompose each scenario to aid identification of observables for monitoring for potentially malicious actions. The effectiveness of the identified observables is validated using two data sets. Results of the research show the developed methodology is effective in detecting the malicious insider scenarios on Windows guests

    Small polar hits against <i>S. aureus</i>:Screening, initial hit optimization and metabolomic studies

    Get PDF
    The global prevalence of antibacterial resistance requires new antibacterial drugs with novel chemical scaffolds and modes of action. It is also vital to design compounds with optimal physicochemical properties to permeate the bacterial cell envelope. We described an approach of combining and integrating whole cell screening and metabolomics into early antibacterial drug discovery using a library of small polar compounds. Whole cell screening of a diverse library of small polar compounds against Staphylococcus aureus gave compound 2. Hit expansion was carried out to determine structure–activity relationships. A selection of compounds from this series, together with other screened active compounds, was subjected to an initial metabolomics study to provide a metabolic fingerprint of the mode of action. It was found that compound 2 and its analogues have a different mode of action from some of the known antibacterial compounds tested. This early study highlighted the potential of whole cell screening and metabolomics in early antibacterial drug discovery. Future works will require improving potency and performing orthogonal studies to confirm the modes of action

    Integrating user-centred design in the development of a silent speech interface based on permanent magnetic articulography

    Get PDF
    Abstract: A new wearable silent speech interface (SSI) based on Permanent Magnetic Articulography (PMA) was developed with the involvement of end users in the design process. Hence, desirable features such as appearance, port-ability, ease of use and light weight were integrated into the prototype. The aim of this paper is to address the challenges faced and the design considerations addressed during the development. Evaluation on both hardware and speech recognition performances are presented here. The new prototype shows a com-parable performance with its predecessor in terms of speech recognition accuracy (i.e. ~95% of word accuracy and ~75% of sequence accuracy), but significantly improved appearance, portability and hardware features in terms of min-iaturization and cost
    • …
    corecore