34 research outputs found

    Producción de ocratoxina en las principales especies de "Aspergillus" sección cirdumdati estudio de los genes implicados, métodos de detección y control

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Biológicas, Departamento de Microbiología III, leída el 22/06/2011.Depto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasTRUEProQuestpu

    Assessment of the Effect of Satureja montana and Origanum virens Essential Oils on Aspergillus flavus Growth and Aflatoxin Production at Different Water Activities

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Aflatoxin contamination of foodstuffs poses a serious risk to food security, and it is essential to search for new control methods to prevent these toxins entering the food chain. Several essential oils are able to reduce the growth and mycotoxin biosynthesis of toxigenic species, although their efficiency is strongly influenced by the environmental conditions. In this work, the effectiveness of Satureja montana and Origanum virens essential oils to control Aspergillus flavus growth was evaluated under three water activity levels (0.94, 0.96 and 0.98 aw) using a Bioscreen C, a rapid in vitro spectrophotometric technique. The aflatoxin concentrations at all conditions tested were determined by HPLC-FLD. Aspergillus flavus growth was delayed by both essential oil treatments. However, only S. montana essential oil was able to significantly affect aflatoxin production, although the inhibition percentages widely differed among water activities. The most significant reduction was observed at 0.96 aw, which is coincident with the conditions in which A. flavus reached the highest levels of aflatoxin production. On the contrary, the treatment with S. montana essential oil was not effective in significantly reducing aflatoxin production at 0.94 aw. Therefore, it is important to study the interaction of the new control compounds with environmental factors before their application in food matrices, and in vitro ecophysiological studies are a good option since they provide accurate and rapid results.Peer reviewedFinal Published versio

    Genetic regulation of aflatoxin, ochratoxin A, trichothecene, and fumonisin biosynthesis: A review

    Get PDF
    Mycotoxins are a significant food safety concern. Aflatoxins, trichothecenes, fumonisins, and ochratoxin A are considered the most important mycotoxins due to their frequent occurrence in food products and their well-known toxicity. The regulation of mycotoxin biosynthesis occurs mainly at transcriptional level, and specific regulators have been described in every biosynthetic cluster. Secondary metabolite production, including mycotoxin synthesis, is also regulated by general regulator pathways affected by light, osmotic stress and oxidative stress, among others. This review is focused on this genetic regulation of mycotoxin biosynthesis by specific genes and global regulators

    A Novel Niosome-Encapsulated Essential Oil Formulation to Prevent Aspergillus flavus Growth and Aflatoxin Contamination of Maize Grains During Storage

    Get PDF
    Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first applicatio

    A Comprehensive Study on the Occurrence of Mycotoxins and Their Producing Fungi during the Maize Production Cycle in Spain

    Get PDF
    Mycotoxin contamination is one of the main problems affecting corn production, due to its significant risk to human and animal health. The Fusarium and Aspergillus species are the main producers of mycotoxins in maize, infecting both pre-harvest and during storage. In this work, we evaluated the presence of mycotoxins and their producing species along maize production cycles in three different stages (anthesis, harvest, and storage) during three consecutive seasons (2016–2018). Fungal occurrences were studied using species-specific PCR protocols, whereas mycotoxin levels were determined by LC-MS/MS. Fumonisin-producing Fusarium species (F. verticillioides and F. proliferatum), as well as the aflatoxin producer Aspergillus flavus, were the most predominant species at all stages; although, during some seasons, the presence of F. graminearum and A. niger aggregate species were also identified. Contrastingly, fumonisins were the only mycotoxins detected and levels were always under legal regulations. The results presented here demonstrate that even when fungal contamination occurs at the early stages of the maize production cycle, the application of good agricultural and storage practices might be crucial to ensure mycotoxin-free grains

    The Genomic Regions That Contain Ochratoxin A Biosynthetic Genes Widely Differ in Aspergillus Section Circumdati Species

    Get PDF
    Aspergillus section Circumdati includes 27 species, some of which are considered ochratoxin A (OTA) producers. However, there is considerable controversy about their potential OTA synthesis ability. In this work, the complete genomes of 13 species of Aspergillus section Circumdati were analyzed in order to study the cluster of OTA biosynthetic genes and the region was compared to those previously reported in A. steynii and A. westerdijkiae. The results obtained reveal that the genomes of some species in this section, including A. affinis, A. cretensis, A. elegans, A. muricatus, A. pulvericola, A. roseoglobulosus, and A. subramanianii, contain a potentially functional OTA biosynthetic cluster. Therefore, they might be able to synthesize the toxin. On the contrary, A. melleus, A. ochraceus, A. ostianus, A. persii, A. sclerotiorum, A. sesamicola, and A. westlandensis contain a truncated version of the cluster that lacks many of the genes involved in OTA biosynthesis, which might be related to their inability to produce OTA. The gain/loss pattern is different in all species, which suggests that the genetic evolution of this region might be due to independent events

    Biocontrol of mycotoxigenic fungi using bacteria isolated from ecological vineyard soils

    Get PDF
    The presence of mycotoxin-producing Aspergillus species in vineyards is a problem for food safety and the economy. In addition, rising temperatures due to climate change are modifying microbial communities, causing the replacement of some fungal species and the rise of mycotoxins such as aflatoxins. The use of microorganisms as biological control agents (BCAs) is one of the most promising strategies to prevent fungal growth and toxin production. In this study, 513 microor-ganisms were isolated from organic vineyard soils in different regions of Spain. The 480 bacteria and 33 yeasts isolated were sequentially screened to select those with the most suitable charac-teristics to be used as BCAs. After identifying 16 isolates meeting all requirements, six bacterial isolates were selected to test their potential to control three relevant toxigenic grape fungi in vitro: A. carbonarius, A. niger and A. flavus. Isolates of Arthrobacter sp., Rhodococcus sp. and Bacillus my-coides showed an excellent ability to reduce the growth and mycotoxin concentration of the above-mentioned fungi and represent potential candidates for further study regarding their possible industrial application as a BCA.This research was funded by the Spanish Ministry of Science and Innovation, grant num‐ ber RTI 2018‐097593‐B‐C21
    corecore