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Abstract: Aflatoxin contamination of foodstuffs poses a serious risk to food security, and it is essen-
tial to search for new control methods to prevent these toxins entering the food chain. Several es-
sential oils are able to reduce the growth and mycotoxin biosynthesis of toxigenic species, although 
their efficiency is strongly influenced by the environmental conditions. In this work, the effective-
ness of Satureja montana and Origanum virens essential oils to control Aspergillus flavus growth was 
evaluated under three water activity levels (0.94, 0.96 and 0.98 aw) using a Bioscreen C, a rapid in 
vitro spectrophotometric technique. The aflatoxin concentrations at all conditions tested were de-
termined by HPLC-FLD. Aspergillus flavus growth was delayed by both essential oil treatments. 
However, only S. montana essential oil was able to significantly affect aflatoxin production, although 
the inhibition percentages widely differed among water activities. The most significant reduction 
was observed at 0.96 aw, which is coincident with the conditions in which A. flavus reached the high-
est levels of aflatoxin production. On the contrary, the treatment with S. montana essential oil was 
not effective in significantly reducing aflatoxin production at 0.94 aw. Therefore, it is important to 
study the interaction of the new control compounds with environmental factors before their appli-
cation in food matrices, and in vitro ecophysiological studies are a good option since they provide 
accurate and rapid results. 

Keywords: Aflatoxin; bioscreen; preservatives; essential oils; food security 

Key Contribution: The effect of natural compounds on the growth of toxigenic species and on their 
ability to produce mycotoxins widely varied regarding the doses and the environmental conditions 
in which they were applied. Therefore, it is important to develop accurate and rapid methods to 
easily evaluate a combination of different parameters.  
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1. Introduction 

Mycotoxins are fungal secondary metabolites with adverse effects on human and animal health. 
To date, more than 400 different molecules, produced by several types of fungi, have been character-
ized [1]. Because of their high toxicity, aflatoxins B1, B2, G1, and G2 (AFB1, AFB2, AFG1, and AFG2) are 
the most important, and are produced by the species of Aspergillus section Flavi, mainly Aspergillus 
flavus [2]. These toxins can contaminate a wide range of agricultural commodities, either in the field 
or during storage, and they are considered ubiquitous contaminants of the food supply throughout 
the developing world [3]. AFB1 has been described as the most toxic naturally occurring human car-
cinogen and as the cause of hepatocellular carcinoma in humans and animals [3,4]. The International 
Agency for Research on Cancer (IARC) has classified the “naturally occurring mixes of aflatoxins” as 
a Group 1 human carcinogens [5].  

Aflatoxin (AF) contamination of feed and food products poses a serious risk to food security and 
leads to important economic losses due to the impossibility to market contaminated products as well 
as veterinary and health costs. Most countries have established maximum levels of these contami-
nants allowed in food products [5]. One of the main problems is that mycotoxins are extremely stable 
compounds. They are heat-resistant, with melting temperatures above 250 °C, and tolerate a wide 
pH range, from 3 to 10 [6,7]. Furthermore, mycotoxins have nondetectable sensory characteristics and 
they do not change the organoleptic properties of food products. Thus, once mycotoxins are present 
in raw ingredients, they are very difficult to eliminate. Therefore, preventing contamination is the 
best approach and thus it is essential to establish adequate control methods to prevent AFs from 
entering the food chain [8]. The best strategy to prevent their presence in agrifood products is to 
completely avoid fungal growth. However, this might be complicated due to the way food and feed 
materials are harvested, stored and processed. Moreover, the presence of the fungus is not always 
associated with the presence of mycotoxins, as the ecological conditions for mycotoxin production 
are narrower than for fungal growth. Thus, it becomes more important to look for methods that not 
only focus on controlling fungal growth in food matrices, but also on preventing the synthesis of 
mycotoxins [6,9]. 

Many factors influence A. flavus growth and AF production in food products, including nutri-
tional composition, temperature, pH, water activity (aw), atmospheric composition, and storage 
times, as well as the presence and concentration of preservatives [10]. The application of food pre-
servatives to control mycotoxin-producing fungi is effective. However, consumers are now demand-
ing safer and more ecofriendly products free from chemicals. In this context, natural plant extracts 
are considered to be good alternatives [11] 

Essential oils (EOs) are aromatic extracts obtained mostly from plant material and have demon-
strated strong antimicrobial, antitoxigenic and food preservative properties as well as low toxicity 
towards animals and humans [12]. They are allowed in food products, have less environmental im-
pact and, therefore, a wider public acceptance [13]. These natural plant extracts are recognized as safe 
on the GRAS (Generally Recognized As Safe) list, and are used in various sectors, such as agriculture 
(plant fortifiers, biostimulants, pesticides, postharvest or herbicides), food industry (preservatives or 
flavorings) and pharmaceutics (aroma compounds or functional ingredients) [13]. In addition, their 
use is approved for ecological agriculture [14]. Several EOs have been reported to reduce not only the 
growth of toxigenic fungal species but also to interfere in mycotoxin biosynthesis to some extent 
[15,16]. Satureja montana (SM) and Origanum virens (OV) EOs are highly rich in carvacrol and thymol, 
respectively, which are responsible for their antifungal properties [17]. 
It is well known that controlling the dose of preservatives is crucial, since suboptimal concentrations 
could lead to stimulation of both growth and toxin accumulation [18]. The efficacy of EOs is also 
influenced by the environmental conditions, mainly aw and temperature [19]. Therefore, it is im-
portant to unravel the interactions between these environmental factors and antifungal compounds. 
The study of these interactions required laborious in vitro ecophysiological studies to evaluate fungal 
growth and mycotoxin production, which requires the use of a lot of material and the planning of 
long-term experiments. The use of Bioscreen-C Microbiological Growth Analyzer for mycological 
studies is a quick method to study the effects of multiple factors on mold growth [10,20,21]. 
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The aim of this work was to evaluate the effect of two EOs extracted from SM and OV on the 
early growth and ability to produce AFs by two A. flavus strains (A7 and A10) at several EO concen-
trations (0, 350, 700, and 1000 μg/mL) and three aw conditions (0.94, 0.96, and 0.98). 

2. Results 

2.1. Effect of Satureja montana and Origanum virens Essential Oils under Different Water Activities on 
Aspergillus flavus Growth  

The growth curves obtained using Bioscreen-C for the two strains of A. flavus (A10 and A7), in 
Yeast Extract Sucrose (YES) medium supplemented by different concentrations (0, 350, 700, and 1000 
μg/mL) of Satureja montana (SM) and Origanum virens (OV) essential oils (EOs), under the three water 
activities tested (0.94, 0.96, and 0.98 aw), are shown in Appendix A. As an example, Figure 1 shows 
the growth curve of A. flavus A7 strain at 0.94 aw with different OV EO concentrations. The growth 
curves represent the optical density (O.D) units at 600 nm over time. 

 

 
Figure 1. Growth curve obtained using the Bioscreen C analyzer representing optical density at 600 
nm for 6 days for A. flavus A7 at 0.94 aw. Ten replicates for each concentration (0, 350, 700, and 1000 
μg/mL) tested are represented. Concentrations of essential oils are represented in the legend. 

In this study, comparisons between treatments were done using the time to detection (TTD). 
TTD is described as the necessary time for fungal growth to reach a specific O.D level with a treat-
ment. Medina et al. (2012) also described a direct relationship between O.D and A. flavus biomass 
[20]. In this work, the TTD was calculated using an O.D at 600 nm = 0.2.  

Figure 2 shows the TTD for all the combinations of EO concentrations and aw for the two A. flavus 
strains tested. 

The statistical analyses regarding the influence of SM EO treatment on the growth of both strains 
(Figure 2a) showed a significant effect of EO concentrations (p < 0.0001), and aw levels (p < 0.0001). 
The interaction between both factors (aw and EO concentration) was also statistically significant (p < 
0.0001). The highest antifungal properties, related to the less favorable conditions for growth (highest 
TTD), were obtained with 1000 μg/mL of SM EO and 0.94 aw, with approximate TTD values of 4900 
and 5000 minutes in the cases of A7 and A10 strains, respectively. There was a direct relationship 
between the highest SM EO concentrations and increases in TTD, showing delayed fungal growth. 
Interestingly, at 0.96 aw and for both A. flavus strains, more inhibition was observed at 700 μg/mL 
than at 1000 μg/mL. In general, the treatment with SM EO retarded fungal growth in relation to the 
corresponding control at all aw levels tested. 
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The statistical analyses showed that, for OV EO, the growth of both strains tested (Figure 2b) 
was significantly affected by the EO concentrations (p < 0.0001) and aw levels (p < 0.0001). As previ-
ously shown, the interactions between both factors were also statistically significant (p < 0.0001). The 
highest antifungal effect was observed at 0.94 aw and 700 μg/mL, with values of approximately 4000 
minutes for both isolates of A. flavus. For the A7 strain, there were no significant differences between 
the two higher doses tested (700 and 1000 μg/mL) of OV EO at 0.94 and 0.98 aw. In the case of the A10 
strain, the maximum delay in fungal growth was obtained at 0.94 aw and 700 μg/mL. In all aw condi-
tions tested, the application of OV EO delayed fungal growth with respect to the corresponding con-
trol. 

 
(a) 

 
(b) 

Figure 2. Time to detection (TTD, minutes) at 0.2 nm of Optical Density (O.D) of fungal growth of two 
A. flavus strains (A10 and A7) under different water activity levels (0.98, 0.96 and 0.94 aw) at different 
concentrations (0, 350, 700 and 1000 μg/mL) of Satureja montana (a) and Origanum virens (b) essential 
oils. Values are the means of 10 replicates ± standard errors. Means with a common letter are not 
significantly different (p > 0.05). Concentrations of essential oils are represented in the legend. In all 
cases statistical analysis was performed independently for each essential oil (EO) and isolate. 

In order to further study the effect of different concentrations of EOs and their interaction with 
environmental factors in Figure 3, we represented the rate to detection (RTD, 1/TTD) at 0.2 nm calcu-
lated in all conditions tested and normalized by the RTD0, which corresponds to the control without 
EO treatment (RTD/RTD0). If the effectiveness of the EOs was the same under the different environ-
mental conditions, in these graphs, the lines should be superposed to each other. This also allows for 
the comparison of the efficacy between different antifungals.  
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In the specific case of SM EO shown in Figure 3a,b, it can be observed that wetter conditions 
(0.98 aw) will allow higher control under the highest concentrations in comparison with the other 
dryer conditions tested. For OV EO, it can be observed in Figure 3c,d that there is a clear interaction 
at 0.96 aw where the antifungal effect is decreased.  

For both A. flavus isolates, the presence of SM EO showed higher antifungal activity compared 
to OV EO treatment at all the aw levels tested.  

 

(a) (b) 

(c) (d) 

Figure 3. Graphical representation of relative rate to detection (RTD) (RTD/RTD0) at different concen-
trations (0, 350, 700 and 1000 μg/mL) of Satureja montana (SM) and Origanum virens (OV) essential oils; 
(a) A10 strain with SM essential oil, (b) A7 with SM essential oil, (c) A10 strain with OV essential oil 
and (d) A7 strain with OV essential oil. The different aw levels studied (0.94, 0.96 and 0.96) are repre-
sented in the legend. Data represent the average of the relative RTD of 10 replicates. 

2.2. Effectiveness of Satureja montana and Origanum virens Essential Oils at Different Water Activity 
Levels in Reducing Aflatoxin Production 

The amount of aflatoxin B1 and B2 (AFB1 and AFB2) produced after 7 days of incubation at three 
aw after the treatments with SM and OV EOs was determined, and results are shown in Table 1.  

The statistical analyses regarding AFB1 and AFB2 produced by A. flavus A10 strain in the pres-
ence of SM EO showed significant differences among concentrations (p < 0.0001), aw (p < 0.0001) and 
their interaction (p < 0.0001). Comparing between strains, the A10 isolate was able to produce higher 
levels of AFB1 and AFB2. Significant reductions were achieved for both toxins when SM EO was used 
at 0.96 and 0.98 aw, with percentages of 85% and 94%, respectively, in AFB1 concentrations of 1000 
μg/mL of SM EO. For AFB2, 90% and 94% reductions were observed at the same dose of SM EO. It is 
important to highlight the reduction in AF production found at 0.96 aw. Aspergillus flavus A10 reached 
very high levels of production in control assays and more than 84% of reduction was obtained even 
at the low dose of SM EO (350 μg/mL) tested.  

The treatment with OV EO had a lower effect on AF production. The statistical analyses of AFB1 
for the A10 strain showed significant differences between aw (p < 0.0001) but no effect on EO concen-
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tration (p = 0.3140) or the interaction of both factors (p = 0.3323). In the case of AFB2, there were sig-
nificant differences among the aw levels (p < 0.0001) and EO concentrations (p = 0.050), whereas the 
interaction between factors was not significant.  

Aspergillus flavus A7 produced lower levels of AFB1 and AFB2 than A10. In most cases, the levels 
were below the detection limits. The statistical analyses regarding AFB1 and AFB2 produced in the 
presence of SM EO showed significant differences among the concentrations (p < 0.0001) and aw levels 
(p < 0.0001), as well as a significant interaction between both factors (p < 0.0001). The OV EO treatment 
showed significant differences among aw levels (p < 0.0001) and EO concentrations (pB1 < 0.0001 and 
pB2 = 0.0040), as well as the interaction of factors (pB1 = 0.0003 and pB2 = 0.0008). 

Table 1. Aflatoxin concentrations (B1 and B2) produced by A. flavus isolates (A10 and A7) in the pres-
ence of different concentrations (0, 350, 700 and 1000 μg / mL) of Satureja montana (SM) and Origanum 
virens (OV) essential oils (EOs), under different water activity levels (0.98, 0.96 and 0.94 aw). Values 
are the means of 3 replicates ± standard errors. Means with a common letter are not significantly 
different (p > 0.05). In all cases statistical analysis was performed independently for each EO and iso-
late. 

E.O aw μg/mL 
A. flavus A 10 A. flavus A 7 

B1 (μg/g agar) B2 (μg/g agar) B1 (μg/g agar) B2 (μg/g agar) 

SM 

9400 

0 751 ± 79 ab 28 ± 2 a N.D a N.D a 
350 786 ± 762 ab 32 ± 34 a N.D a N.D a 
700 572 ± 143 a 28 ± 7 a 22 ± 7 a N.D a 

1000 404 ± 35 a 27 ± 2 a N.D a N.D a 

9600 

0 58,235 ± 3061 d 1856 ± 114 d 56 ± 1 ab N.D a 
350 9525 ± 5155 bc 251 ± 136 ab 77 ± 8 ab N.D a 
700 5205 ± 3533 abc 103 ± 69 ab 358 ± 14 c 5 ± 0 b 

1000 8594 ± 3084 abc 183 ± 74 ab 5 ± 7 a N.D a 

9800 

0 13,633 ± 2270 c 542 ± 99 c 195 ± 135 b N.D a 
350 8076 ± 3053 abc 313 ± 113 bc N.D a N.D a 
700 275 ± 27 a 11 ± 3 a N.D a N.D a 

1000 786 ± 285 ab 31 ± 12 a N.D a N.D a 

OV 

9400 

0 1614 ± 34 ab 91 ± 1 ab 132 ± 8 bc 3 ± 0 bc 
350 1496 ± 153 ab 82 ± 9 a 98 ± 9 abc 2 ± 0 abc 
700 911 ± 72 ab 49 ± 6 a 60 ± 2 abc N.D a 

1000 370 ± 59 a 25 ± 4 a N.D a N.D a 

9600 

0 14,136 ± 10,836 abcd 342 ± 254 abc 175 ± 5 cd 2 ± 0 abc 
350 24,284 ± 3092 d 664 ± 124 c 286 ± 71 d 4 ± 1 c 
700 20,737 ± 9082 cd 504 ± 222 c 278 ± 38 d 4 ± 1 c 

1000 15,866 ± 1696 bcd 339 ± 54 abc 68 ± 74 abc 1 ± 2 ab 

9800 

0 13,671 ± 831 abcd 551 ± 32 abc 17 ± 1 ab N.D a 
350 11,751 ± 876 abcd 472 ± 35 abc 18 ± 2 ab N.D a 
700 6827 ± 766 abc 296 ± 36 abc N.D a N.D a 

1000 7315 ± 755 abc 321 ± 22 abc 5 ± 7 a N.D a 
N.D: Not detected (values below detection limits).  

3. Discussion 

Environmental sustainability, as well as ensuring food safety, are important issues which have 
increased the search for new products that might be applied as fungicides or natural preservatives, 
to replace synthetic chemicals to control the growth of toxigenic species in agrifood products. It has 
been widely demonstrated that essential oils (EOs) could be a good alternative to reduce fungal 
growth and mycotoxin production by several toxigenic species [11]. However, to develop appropri-
ate control strategies to be applied in food matrices, it is important to study fungal behavior under 
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different environmental conditions. Several authors have reported a variation in the effectiveness of 
fungicide treatments under different environmental conditions, mainly temperature or humidity 
[9,22]. In order to establish the interaction of these compounds with environmental factors (i.e., stor-
age or conservation conditions), in vitro ecophysiological studies are a good option since they pro-
vide accurate and rapid results. There is also a need for rapid in vitro techniques that give significant 
information on the range of actions of these compounds under different environmental conditions. 
The Microbiological Growth Analyzer, Bioscreen-C, is a fast system that allows the evaluation of the 
effects of these new control agents under a combination of various environmental factors [23]. More-
over, this method has been successfully applied to evaluate the growth of filamentous organisms 
through automated monitoring [20,24]. In addition, this system provides an inexpensive tool to sim-
ultaneously test various compounds and to establish their optimal environmental conditions to be 
applied. This method allows us to plan large-scale studies since it is composed of two 100-well plates, 
requiring a minimal volume (300–500 μL/well), and all wells can be treated independently [20]. As 
mentioned before, the parameter studied in this work was the time to detection (TTD, time in which 
fungal growth is detected at a certain biomass level), which makes the calculation independent of the 
experimental time [20]. The study of these parameters is a very good approximation to understand 
the growth of fungal colonies in a 3D space and at very low biomass levels [10]. 

Recent consumer trends towards safer foodstuffs, produced using sustainable and ecofriendly 
methods, have sparked great interest in new alternatives to traditional chemical food preservatives 
or synthetic fungicides [13]. In a recently published work carried out by our group, the EOs extracted 
from Satureja montana (SM) and Origanum virens (OV) were demonstrated to be effective to control-
ling A. flavus growth and its ability to produce aflatoxins (AF) in vitro or in maize grains when hu-
midity was maintained at high levels [25]. Considering the influence of environmental factors on the 
effectiveness of EOs, the objective of the present work was to determine if they were able to control 
fungal growth and AF production at three different water activity (aw) levels. Moreover, it is known 
that the additional stress posed by fungicide agents may stimulate mycotoxin production as a defense 
reaction when environmental conditions vary [26]. Our results, which showed that under specific 
temperature x aw combinations, the amount of toxin was increased, confirming the necessity of per-
forming this kind of integrated experiment to test the effectiveness of antifungal compounds at dif-
ferent doses and in a wide range of conditions. This is especially important in the case of low-pro-
ducing strains, such as the one we used (A7), which without EOs would not be considered as a prob-
lem in terms of food safety. However, AF production spikes were detected at certain conditions of aw 
under the presence of both EOs, increasing the potential risk for consumers. 

In this study, we have demonstrated that SM EO was able to retard fungal growth and reduce 
AF production, mainly at the highest aw levels tested. The results obtained regarding the effect of SM 
EO on fungal growth and AF production by A. flavus at 0.98 aw using Bioscreen C are similar to those 
reported in previous in vitro studies in our laboratory [25]. The most significant results in this case 
were observed at 0.96 aw, which is coincident with the conditions in which both isolates reached the 
highest levels of AF production. In this latter case, the levels of inhibition reached significant values 
in the case of fungal growth and AF production, respectively, even at the lowest dose tested (350 
μg/mL). Therefore, the application of this EO might be adequate during storage when the moisture 
levels of the products are quite high. As mentioned above, the treatment with SM EO was not effec-
tive to significantly reduce AF production at 0.94 aw. However, production levels reached at this aw 
are quite low, even at control conditions compared with other conditions, which again reveals the 
relevance of maintaining good storage conditions to avoid the AF contamination of agrifood prod-
ucts, and it would not be necessary to apply any fungicide treatment. Besides, this treatment would 
be applied in regions with wet weather conditions where the maintenance of these good storage prac-
tices is difficult and expensive. 

Taking into account our results, the application of SM EO would be appropriate in food products 
with high water content and those that are frequently contaminated by AFs such as sorghum, al-
monds, pistachio and rice. On the contrary, the treatment of dried food matrices might not be neces-
sary due to the inability of A. flavus to produce AFs in these extreme conditions. 
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4. Conclusions 

Our results demonstrate that the application of Satureja montana essential oils might be a good 
option to prevent aflatoxin contamination of food products, although its effectiveness widely differed 
among water activity (aw) levels. At lower aw conditions, A. flavus growth was significantly delayed 
and aflatoxin production was consistently reduced compared to other humidity conditions, but no 
effect was observed after essential oil treatment. This means that if it is applied in dry matrices or 
when good storage practices are applied, it will be an unnecessary cost for the producers. Meanwhile, 
application in wetter conditions will be adequate as an effective control method to guarantee low 
levels of aflatoxins.  

5. Materials and Methods  

5.1. Microorganism and Essential Oils 

5.1.1. Fungal Strains 

Two aflatoxin-producing strains of A. flavus were used (A7 and A10). They were isolated from 
maize and oats in different works performed in our laboratory. The correct identification of these 
isolates was confirmed using a species-specific PCR protocol [27]. The strains were selected due to 
their ability to produce aflatoxins (AFs). The strain A10 was classified as a high toxin-producing iso-
late (5.90 ng/μL AFB1 + 0.43 ng/μL AFB2), whereas the strain A7 was able to produce low levels of 
AFs (0.33 ng/μL AFB1 + 0.03 ng/μL AFB2). 

The strains were maintained by regular subculturing on potato dextrose agar medium (PDA 
(Pronadisa, Madrid, Spain)) at 25 ± 1 °C for 5 days in the dark, and stored as a spore suspension in 
15% glycerol (Panreac, Madrid, Spain) at −80 °C until required. 

5.1.2. Essential Oils of Plant 

The essential oils (EOs) tested from Satureja montana L. (SM) and Origanum virens Hoffmanns 
and Link (OV) were provided by The Agricultural Research Centre of Albaladejito (Cuenca, Spain). 
Extraction was previously described by García-Díaz et al. (2019) [25]. Briefly, each plant species was 
extracted by hydrodistillation of the dried aerial parts of aromatic plants, following the methodology 
proposed by the European Pharmacopoeia in a Clevenger-type apparatus for 2 hours. The chroma-
tograms are shown in Appendix B. 

These compounds were filtered with sterile 0.22 μm pore size filters (Fisher Scientific, Madrid, 
Spain) and stored at −20 °C in amber glass vials (Thermo Scientific, Madrid, Spain), until required. 

5.2. Experimental Design 

Semisolid YES (Yeast Extract Sucrose) medium (20 g/L of yeast extract, 150 g/L of sucrose, 0.5 
g/L of magnesium sulfate and 0.5 g/L of agar [20]) at different water activities (aw) (0.94, 0.96, and 
0.98) was spiked with different concentrations of the EOs. The aw of the YES medium was modified 
by substituting water with glycerol [28]. 

The essentials oils of SM and OV were diluted in 5 mL of YES media to obtain final concentra-
tions of 350, 700, and 1000 μg/mL. The control medium was supplemented by the same volume of 
water instead of EO.  

The initial spore suspensions of each strain were prepared in sterile saline solution (9 g/L sodium 
chloride (Merck, Darmstadt, Germany)). After homogenizing, the spore concentrations of the solu-
tions were measured using a Thoma counting chamber (Marienfeld, Lauda-Königshofen, Germany) 
and then adjusted with a sterile solution to a final concentration of 107 spores per mL.  

Every medium was inoculated with 50 μL of a 107 spores/mL suspension of the corresponding 
strain. The resulting final concentration was 105 spore/mL in the YES medium for each strain, EO 
concentration and aw. A total of 48 conditions were evaluated. Ten replicates per treatment were car-
ried out. 
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Three hundred µL of inoculated media, as well as noninoculated controls, were placed in 100-
well honeycomb plates and incubated at 25 ± 1 °C for 7 days in the Bioscreen C Microbiological 
Growth Analyser (Labsystems, Helsinki, Finland).  

The optical density (O.D) was automatically recorded every 30 minutes using a 600 nm filter 
over 7 days (10,080 minutes). The data were recorded using the software Easy Bioscreen Experiment 
(EZExperiment) provided by the manufacturer and then exported to a Microsoft Excel Professional 
2010 (Microsoft Corporation, Washington, USA) datasheet for further analyses. 

5.3. Aflatoxin Assessment 

For each treatment and condition, 3 replicates corresponding to the content of 3 wells were trans-
ferred to 2 mL Eppendorf tubes. AF extraction was carried out with 0.8 mL of chloroform (Merck, 
Darmstadt, Germany), by vigorous shaking for 60 minutes. The mix was then centrifuged for 5 
minutes at 5000 rpm (Centrifuge 5417 R (Eppendorf, Stevenage, UK)). The aqueous phase was de-
canted, and the chloroform phase was transferred to a new tube. The samples were evaporated to 
dryness in a miVac vacuum centrifuge (SP Scientific, Suffolk, United Kingdom), and the residues 
were redissolved in 500 μL methanol/water (50:50; v/v). The samples were filtered using a nylon sy-
ringe filter, 0.22 μm pore size (Minisart®, Sartorius Stedim, Germany), and were transferred into 
HPLC-FLD vials and stored at −20 °C until analysis.  

The samples were analyzed by an HPLC-FLD detector (Agilent1200 series HPLC, Agilent, 
Cheadle, UK), coupled to a UVE photochemical derivatizer (LCTech, Obertaufkirchen, Germany). 
The FLD detector excitation and emission wavelengths were 330 and 460 nm, respectively. Chroma-
tographic separations were performed on a C18 column ZORBAX-Eclipse Plus (4.6 × 150 cm, 3.5 μm 
(Agilent, Cheadle, UK)). Methanol/water/acetonitrile (30:60:10; v/v/v) was used as the mobile phase 
at a flow rate of 1 mL/min. AFG2, AFG1, AFB2 and AFB1 were eluted at 6.5, 7.6, 8.7 and 10.4 min, re-
spectively. The signals were processed by Agilent Chem-Station software (Agilent Technologies, Palo 
Alto, CA, USA). AFs were quantified on the basis of the HPLC fluorimetric response compared to a 
range of mycotoxin standards supplied by Romer Labs (Romer Labs, Runcorn, UK). The limit of de-
tection (LOD) of the analysis was 0.52 ng for AFB1 and AFG1, and 0.06 ng for AFB2 and AFG2, based 
on a signal to noise ratio of 3:1. 

5.4. Data Analysis 

The raw datasets obtained from the Bioscreen C were subjected to two further steps before anal-
ysis. First of all, the average of the first 5 measurements (180 minutes) for each well was calculated, 
and the average was subtracted from all subsequent measurements in order to correct the different 
signal backgrounds. Subsequently, the time to detection (TTD) for 0.2 nm of O.D was obtained using 
a Microsoft Excel template (kindly provided by Dr. R. Lambert), which used linear interpolation be-
tween successive O.D readings [29]. 

Once the TTDs were obtained, analysis of variance (ANOVA) was performed using the different 
concentrations of EOs (0, 350, 700 and 1000 μg/mL) and aw (0.94, 0.96 and 0.98) as independent vari-
ables to evaluate the effect of SM and OV essential oils on the fungal growth of A7 and A10 strains of 
A. flavus. In all cases, statistical analysis was performed independently for each EO and isolate. Be-
cause of the lack of normality of the AF production datasets, ANOVA analysis was performed using 
a log-transformed dataset. The mean comparisons for each independent variable (EO concentration 
and aw) were done using Tukey’s HSD. The statistical package JMP 8 (SAS Institute Inc., 2008; Cary 
NC, USA) was used in the analysis. 
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Appendix A 

The growth curve obtained in Bioscreen-C for two strains of A. flavus (A10 and A7), under the 
different essential oil concentrations (0, 350, 700 and 1000 μL) of Satureja montana (SM) and Origanum 
virens (OV), to the three water activities (0.94, 0.96 and 0.98 aw) tested. 
  

     
        Growth curve A10 strain at 0.94 aw in OV                 Growth curve A7 strain at 0.94 aw in OV 

 
       Growth curve A10 strain at 0.94 aw in SM                 Growth curve A7 strain at 0.94 aw in SM 

 
      Growth curve A10 strain at 0.96 aw in OV                 Growth curve A7 strain at 0.96 aw in OV 

 
      Growth curve A10 strain at 0.96 aw in SM                 Growth curve A7 strain at 0.96 aw in SM 
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      Growth curve A10 strain at 0.98 aw in OV                 Growth curve A7 strain at 0.98 aw in OV 

 
      Growth curve A10 strain at 0.98 aw in SM                 Growth curve A7 strain at 0.98 aw in SM 

Appendix B 

Chromatograms of Origanum virens and Satureja montana essential oils. 

Time (minutes) Compound 
Area (%) 

Satureja montana Origanum virens 
11.03 tricyclene ND 1.7 
11.04 alpha-thujene 2.0 ND 
11.39 alpha-pinene 1.5 0.7 
12.01 Canfeno 0.6 0.2 
12.63 Sabineno 0.9 0.6 
12.98 beta-pineno+Myrcene 5.7 2.4 
13.81 delta-3-carene 0.5 0.4 
14.18 alpha-terpinene 3.2 4.5 
14.49 para cymene 12.6 3.6 
14.64 Limoneno 1.6 0.4 
15.70 gamma-terpinene 22.5 46.0 
16.18 cis sabinene hydrate 0.5 0.3 
17.02 linalool 1.6 0.1 
20.13 borneol 1.4 0.2 
20.32 terpinen-4-ol 1.0 0.5 
22.16 nerol ND 1.3 
23.97 thymol 2.0 21.0 
24.42 carvacrol 34.6 0.1 
28.70 trans-caryophyllene 1.5 5.1 
29.84 e-beta-farnesene 0.1 0.9 
30.60 valencene 0.2 3.0 
31.08 bicyclogermacrene 1.0 2.1 

ND: not detected (values below detection limits). 
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