25,860 research outputs found

    Controlling secretion to limit chemoresistance

    Get PDF
    The tumor microenvironment influences cancer progression and therapy outcome by mechanisms not yet fully understood. In this issue, Bent et al. (2016) show how chemotherapy causes endothelial senescence. Interestingly, senescent endothelial cells do not mount a typical senescence-associated secretory phenotype but instead acutely secrete IL-6, promoting chemoresistance. This study unveils a physiological switch involving PI3K/AKT/mTOR signaling that restrains the senescence secretory responses to limit the detrimental consequences of persistent inflammation

    Frequency dependence of pulsar radiation patterns

    Get PDF
    We report on new results from simultaneous, dual frequency, single pulse observation of PSR B0329+54 using the Giant Metrewave Radio Telescope. We find that the longitude separation of subpulses at two different frequencies (238 and 612 MHz) is less than that for the corresponding components in the average profile. A similar behaviour has been noticed before in a number of pulsars. We argue that subpulses are emitted within narrow flux tubes of the dipolar field lines and that the mean pulsar beam has a conal structure. In such a model the longitudes of profile components are determined by the intersection of the line of sight trajectory with subpulse-associated emission beams. Thus, we show that the difference in the frequency dependence of subpulse and profile component longitudes is a natural property of the conal model of pulsar emission beam. We support our conclusions by numerical modelling of pulsar emission, using the known parameters for this pulsar, which produce results that agree very well with our dual frequency observations.Comment: 24 pages, 8 figures. Accepted for publication in Ap

    Spark Model for Pulsar Radiation Modulation Patterns

    Get PDF
    A non-stationary polar gap model first proposed by Ruderman & Sutherland (1975) is modified and applied to spark-associated pulsar emission at radio wave-lengths. It is argued that under physical and geometrical conditions prevailing above pulsar polar cap, highly non-stationary spark discharges do not occur at random positions. Instead, sparks should tend to operate in well determined preferred regions. At any instant the polar cap is populated as densely as possible with a number of two-dimensional sparks with a characteristic dimension as well as a typical distance between adjacent sparks being about the polar gap height. Our model differs, however, markedly from its original 'hollow cone' version. The key feature is the quasi-central spark driven by pair production process and anchored to the local pole of a sunspot-like surface magnetic field. This fixed spark prevents the motion of other sparks towards the pole, restricting it to slow circumferential drift across the planes of field lines converging at the local pole. We argue that the polar spark constitutes the core pulsar emission, and that the annular rings of drifting sparks contribute to conal components of the pulsar beam. We found that the number of nested cones in the beam of typical pulsar should not excced three; a number also found by Mitra & Deshpande (1999) using a completely different analysis.Comment: 31 pages, 8 figures, accepted by Ap

    Near field and far field scattering of surface plasmon polaritons by one-dimensional surface defects

    Full text link
    A rigorous formulation for the scattering of surface plasmon polaritons (SPP) from a one-dimensional surface defect of any shape that yields the electromagnetic field in the vacuum half-space above the vacuum-metal interface is developed by the use of an impedance boundary condition. The electric and magnetic near fields, the angular distribution of the far-field radiation into vacuum due to SPP-photon coupling, and the SPP reflection and transmission coefficients are calculated by numerically solving the k-space integral equation upon which the formulation is based. In particular, we consider Gaussian-shaped defects and study the dependence of the above mentioned physical quantities on their 1/e half-width a and height h. SPP reflection is significant for narrow defects; maximum reflection (plasmon mirrors) is achieved for a~lambda/10. For increasing defect widths, protuberances and indentations behave differently. The former give rise to a monotonic increase of radiation at the expense of SPP transmission for increasing defect half-width. Indentations exhibit a significant increase of radiation (decrease of SPP transmission) for half-widths of the order of or smaller than the wavelength, but tend to total SPP transmission in an oscillatory manner upon further increasing the half-width. Light-emitters might thus be associated with either wide indentations, or protuberances with widths that are of the order of or smaller than the wavelength.Comment: REVTeX 3.1, 10 pages with 9 EPS figures (epsf macro

    Global velocity field and bubbles in the BCD Mrk86

    Get PDF
    We have studied the velocity field of the Blue Compact Dwarf galaxy Mrk86 (NGC2537) using data provided by 14 long-slit optical spectra. This kinematical information is complemented with narrow-band ([OIII]5007A and Halpha) and broad-band (B, V, Gunn-r and K) imaging. The analysis of the galaxy global velocity field suggests that the ionized gas could be distributed in a rotating inclined disk, with projected central angular velocity of Omega=34 km/s/kpc. The comparison between the stellar, HI and modeled dark matter density profile, indicates that the total mass within its optical radius is dominated by the stellar component. Peculiarities observed in its velocity field can be explained by irregularities in the ionized gas distribution or local motions induced by star formation. Kinematical evidences for two expanding bubbles, Mrk86-B and Mrk86-C, are given. They show expanding velocities of 34 km/s and 17 km/s, Halpha luminosities of 3x10^38 erg/s and 1.7x10^39 erg/s, and physical radii of 374 and 120 pc, respectively. The change in the [SII]/Halpha, [NII]/Halpha, [OII]/[OIII] and [OIII]/Hbeta line ratios with the distance to the bubble precursor suggests a diminution in the ionization parameter and, in the case of Mrk86-B, an enhancement of the shock-excited gas emission. The optical-near-infrared colours of the bubble precursors are characteristic of low metallicity star forming regions (0.2 Zsun) with burst strengths of about 1 per cent in mass.Comment: 14 pages, 12 PostScript figures, accepted for publication in MNRAS, also available at ftp://cutrex.fis.ucm.es/pub/OUT/gil/PAPERS

    The spark-associated soliton model for pulsar radio emission

    Get PDF
    We propose a new, self-consistent theory of coherent pulsar radio emission based on the non-stationary sparking model of Ruderman & Sutherland (1975), modified by Gil & Sendyk (2000) in the accompanying Paper I. According to these authors, the polar cap is populated as densely as possible by a number of sparks with a characteristic perpendicular dimension D approximately equal to the polar gap height scale h, separated from each other also by about h. Each spark reappears in approximately the same place on the polar cap for a time scale much longer than its life-time and delivers to the open magnetosphere a sequence of electron-positron clouds which flow orderly along a flux tube of dipolar magnetic field lines. The overlapping of particles with different momenta from consecutive clouds leads to effective two-stream instability, which triggers electrostatic Langmuir waves at the altitudes of about 50 stellar radii. The electrostatic oscillations are modulationally unstable and their nonlinear evolution results in formation of ``bunch-like'' charged solitons. A characteristic soliton length along magnetic field lines is about 30 cm, so they are capable of emitting coherent curvature radiation at radio wavelengths. The net soliton charge is about 10^21 fundamental charges, contained within a volume of about 10^14 cm^3. For a typical pulsar, there are about 10^5 solitons associated with each of about 25 sparks operating on the polar cap at any instant. One soliton moving relativisticaly along dipolar field lines with a Lorentz factor of the order of 100 generates a power of about 10^21 erg/s by means of curvature radiation. Then the total power of a typical radio pulsar can be estimated as being about 10^(27-28) erg/s.Comment: 27 pages, 5 figures, accepted by Ap
    • …
    corecore