4 research outputs found

    Further delineation of the phenotype of chromosome 14q13 deletions: (positional) involvement of FOXG1 appears the main determinant of phenotype severity, with no evidence for a holoprosencephaly locus

    No full text
    BackgroundDeletions including chromosome 14 band q13 have been linked to variable phenotypes. With current molecular methods the authors aim to elucidate a genotype-phenotype correlation by accurately determining the size and location of the deletions and the associated phenotype.MethodsHere the authors report the molecular karyotyping and phenotypic description of seven patients with overlapping deletions including chromosome 14q13.ResultsThe authors show that deletions including 14q13 result in a recognisable phenotype mainly due to haploinsufficiency of two genes (NKX2-1, PAX9). FOXG1 (on chromosome band 14q12) involvement seems to be the main determinant of phenotype severity. The patients in this study without FOXG1 involvement and deletions of up to 10 Mb have a relatively mild phenotype. The authors cannot explain why some patients in literature with overlapping but smaller deletions appear to have a more severe phenotype. A previously presumed association with holoprosencephaly could not be confirmed as none of the patients in this series had holoprosencephaly.ConclusionsFOXG1 appears the main determinant of the severity of phenotypes resulting from deletions including 14q13. The collected data show no evidence for a locus for holoprosencephaly in the 14q13 region, but a locus for agenesis of the corpus callosum cannot be excluded.status: publishe

    Copy number variants in patients with short stature

    Get PDF
    Height is a highly heritable and classic polygenic trait. Recent genome-wide association studies (GWAS) have revealed that at least 180 genetic variants influence adult height. However, these variants explain only about 10% of the phenotypic variation in height. Genetic analysis of short individuals can lead to the discovery of novel rare gene defects with a large effect on growth. In an effort to identify novel genes associated with short stature, genome-wide analysis for copy number variants (CNVs), using single-nucleotide polymorphism arrays, in 162 patients (149 families) with short stature was performed. Segregation analysis was performed if possible, and genes in CNVs were compared with information from GWAS, gene expression in rodents' growth plates and published information. CNVs were detected in 40 families. In six families, a known cause of short stature was found (SHOX deletion or duplication, IGF1R deletion), in two combined with a de novo potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic CNVs (n=40). In 24 of these families, segregation analysis could be performed, identifying three de novo CNVs and nine CNVs segregating with short stature. Four were located near loci associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA). Besides six CNVs known to be causative for short stature, 40 CNVs with possible pathogenicity were identified. Segregation studies and bioinformatics analysis suggested various potential candidate genes

    A new diagnostic workflow for patients with mental retardation and/or multiple congenital abnormalities: test arrays first

    No full text
    High-density single-nucleotide polymorphism (SNP) genotyping technology enables extensive genotyping as well as the detection of increasingly smaller chromosomal aberrations. In this study, we assess molecular karyotyping as first-round analysis of patients with mental retardation and/or multiple congenital abnormalities (MR/MCA). We used different commercially available SNP array platforms, the Affymetrix GeneChip 262K NspI, the Genechip 238K StyI, the Illumina HumanHap 300 and HumanCNV 370 BeadChip, to detect copy number variants (CNVs) in 318 patients with unexplained MR/MCA. We found abnormalities in 22.6% of the patients, including six CNVs that overlap known microdeletion/duplication syndromes, eight CNVs that overlap recently described syndromes, 63 potentially pathogenic CNVs (in 52 patients), four large segments of homozygosity and two mosaic trisomies for an entire chromosome. This study shows that high-density SNP array analysis reveals a much higher diagnostic yield as that of conventional karyotyping. SNP arrays have the potential to detect CNVs, mosaics, uniparental disomies and loss of heterozygosity in one experiment. We, therefore, propose a novel diagnostic approach to all MR/MCA patients by first analyzing every patient with an SNP array instead of conventional karyotyping
    corecore