39 research outputs found

    Interspecies discrimination of A. fumigatus and siblings A. lentulus and A. felis of the Aspergillus section Fumigati using the AsperGenius® assay

    Get PDF
    The AsperGenius® assay detects several Aspergillus species and the A. fumigatus Cyp51A mutations TR34/L98H/T289A/Y121F that are associated with azole resistance. We evaluated its contribution in identifying A. lentulus and A. felis, 2 rare but intrinsically azole-resistant sibling species within the Aspergillus section Fumigati. Identification of these species with conventional culture techniques is difficult and time-consuming. The assay was tested on (i) 2 A. lentulus and A. felis strains obtained from biopsy proven invasive aspergillosis and (ii) control A. fumigatus (n=3), A. lentulus (n=6) and A. felis species complex (n=12) strains. The AsperGenius® resistance PCR did not detect the TR34 target in A. lentulus and A. felis in contrast to A. fumigatus. Melting peaks for L98H and Y121F markers differed and those of the Y121F marker were particularly suitable to discriminate the 3 species. In conclusion, the assay can be used to rapidly discriminate A. fumigatus, A. lentulus and A. felis.

    A case series of familial ARID1B variants illustrating variable expression and suggestions to update the ACMG criteria

    Get PDF
    ARID1B is one of the most frequently mutated genes in intellectual disability (~1%). Most variants are readily classified, since they are de novo and are predicted to lead to loss of function, and therefore classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of sequence variants. However, familial loss-of-function variants can also occur and can be challenging to interpret. Such variants may be pathogenic with variable expression, causing only a mild phenotype in a parent. Alternatively, since some regions of the ARID1B gene seem to be lacking pathogenic variants, loss-of-function variants in those regions may not lead to ARID1B haploinsufficiency and may therefore be benign. We describe 12 families with potential loss-of-function variants, which were either familial or with unknown inheritance and were in regions where pathogenic variants have not been described or are otherwise challenging to interpret. We performed detailed clinical and DNA methylation studies, which allowed us to confidently classify most variants. In five families we observed transmission of pathogenic variants, confirming their highly variable expression. Our findings provide further evidence for an alternative translational start site and we suggest updates for the ACMG guidelines for the interpretation of sequence variants to incorporate DNA methylation studies and facial analyses

    Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein

    Get PDF
    Purpose Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. Methods We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. Results We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. Conclusion Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping

    Solar Cell

    Get PDF
    A solar cell comprising a semiconductor layer (1) with first doping, an inducing layer (3) arranged on the semiconductor layer (1) and an inversion layer (4) or accumulation layer (4) which due to the inducing layer (3) is induced underneath the inducing layer (3) in the semiconductor layer (1) is characterised in that the inducing layer (3) comprises a material with a surface charge density of at least 1012 cm-2, preferably of at least 5x1012 cm-2, more preferably of at least 1013 cm-2

    Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    Get PDF
    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the semiconductor layer surface (20), wherein the passivation layer (3) comprises a chemically passivating passivation layer element (31) and a field-effect-passivating passivation layer (33) which are arranged above one another on the semiconductor layer surface (20). The semiconductor apparatus is preferably a solar cell

    Solar cell

    No full text
    A solar cell comprising a semiconductor layer (1), a collecting layer (6) for collecting free charge carriers from the semiconductor layer (1) and a buffer layer (3) which is arranged between the semiconductor layer (1) and the collecting layer (6), which buffer layer (3) is designed as a tunnel contact (31) between the semiconductor layer (1) and the collecting layer (6) is characterised in that the buffer layer (3) essentially comprises a material with a surface charge density of at least 1012 cm-2, preferably of at least 5x1012 cm- 2

    Excellent Si surface passivation by low temperature SiO2 using an ultrathin Al2O3 capping film

    No full text
    It is demonstrated that the application of an ultrathin aluminum oxide (Al2O3) capping film can improve the level of silicon surface passivation obtained by low-temperature synthesized SiO2 profoundly. For such stacks, a very high level of surface passivation was achieved after annealing, with Seff <2 cm/s for 3.5 O cm n-type c-Si. This can be attributed primarily to a low interface defect density (Dit <1011 eV–1 cm–2). Consequently, the Al2O3 capping layer induced a high level of chemical passivation at the Si/SiO2 interface. Moreover, the stacks showed an exceptional stability during high-temperature firing processes and therefore provide a low temperature (=400 °C) alternative to thermally-grown SiO2

    Plasma-enhanced chemical vapor deposition of aluminum oxide using ultrashort precursor injection pulses

    No full text
    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the precursor flow in the reactor leads to enhanced control over plasma-surface interactions. By variation of the time interval between the sequential Al(CH3)3 precursor injection pulses (10–50¿ms) into the O2 plasma, the deposition rate (>30¿nm¿·¿min-1) and material properties can be tailored. In situ diagnostics revealed that the deposition process is governed by fast precursor depletion and film growth directly after the precursor pulse. Subsequently, in the remainder of the interval between the precursor pulses, densification of the layer takes place under influence of the O2 plasma. The resulting AlOx films exhibit a low impurity content and refractive index >1.6 for optimized process settings. The films can be applied for effective surface passivation of Si as indicated by ultralow surface recombination velocitie

    Influence of the deposition temperature on the c-Si Surface passivation by Al2 O3 films synthesized by ALD and PECVD

    Get PDF
    The material properties and c-Si surface passivation have been investigated for Al2O3 films deposited using thermal and plasma atomic layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD) for temperatures (Tdep) between 25 and 400°C. Optimal surface passivation by ALD Al2O3 was achieved at Tdep=150–250°C with Sef

    Plasma-assisted ALD for the conformal deposition of SiO2 : process, material and electronic properties

    Get PDF
    Plasma-assisted atomic layer deposition (ALD) was used to deposit SiO2 films in the temperature range of Tdep = 50–400°C on Si(100). H2Si[N(C2H5)2]2 and an O2 plasma were used as Si precursor and oxidant, respectively. The ALD growth process and material properties were characterized in detail. Ultrashort precursor doses (~50 ms) were found to be sufficient to reach self-limiting ALD growth with a growth-per-cycle of ~1.2 Å (Tdep = ~200°C) leading to SiO2 films with O/Si ratio of ~2.1. Moreover, the plasma ALD process led to a high conformality (95–100%) for trenches with aspect ratios of ~30. In addition, the electronic (interface) properties of ultrathin ALD SiO2 films and ALD SiO2/Al2O3 stacks were studied by capacitance-voltage and photoconductance decay measurements. The interface quality associated with SiO2 was improved significantly by using an ultrathin ALD Al2O3 capping layer and annealing. The interface defect densities decreased from ~1×1012 eV-1 cm-2 (at mid gap) for single layer SiO2 to <1011 eV-1 cm-2 for the stacks. Correspondingly, ultralow surface recombination velocities <3 cm/s were obtained for n-type Si. The density and polarity of the fixed charges associated with the stacks were found to be critically dependent on the SiO2 thickness (1–30 nm)
    corecore