2 research outputs found

    Normal zone propagation in various REBCO tape architectures

    Get PDF
    The normal zone propagation velocity (NZPV) of three families of REBCO tape architectures designed for superconducting fault current limiters and to be used in high voltage direct current transmission systems has been measured experimentally in liquid nitrogen at atmospheric pressure. The measured NZPVs span more than three orders of magnitude depending on the tape architectures. Numerical simulations based on finite elements allow us to reproduce the experiments well. The dynamic current transfer length (CTL) extracted from the numerical simulations was found to be the dominating characteristic length determining the NZPV instead of the thermal diffusion length. We therefore propose a simple analytical model, whose key parameters are the dynamic CTL, the heat capacity and the resistive losses in the metallic layers, to calculate the NZPV.The authors acknowledge the funding of this research by FASTGRID Project (EU-H2020, 721019), the Projects COACHSUPENERGY (MAT2014-51778-C2-1-R), SUMATE (RTI2018-095853-BC21 and RTI2018-095853-B-C22) from the Spanish Ministry of Economy and Competitiveness which were cofunded by the European Regional Development Fund, the Project 2017-SGR 753 from Generalitat de Catalunya and the COST Action NANOCOHYBRI (CA16218). Polytechnique MontrĂ©al authors also acknowledge NSERC (Canada), FRQNT (QuĂ©bec), the RQMP infrastructure and CMC microsystems for financial support. ICMAB authors also acknowledge the Center of Excellence awards Severo Ochoa SEV-2015-0496 and CEX2019-000917-S.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Stratégies d'aimantation d'aimants permanents composite NdFeB/Al

    No full text
    RÉSUMÉ: RÉSUMÉ L’électrification des transports reprĂ©sente un enjeu de plus en plus important avec l’urgence climatique observable depuis plusieurs annĂ©es. En effet, une Ă©nergie verte et renouvelable reprĂ©sente le futur pour l’industrie du transport, mais faire cette transition reprĂ©sente un grand dĂ©fi pour cette industrie basĂ©e presque uniquement sur les Ă©nergies fossiles. La seule avenue durable pour le transport est celle de la carboneutralitĂ©. Il existe dĂ©jĂ  plusieurs types de moteurs Ă©lectriques pour les automobiles ou mĂȘme les avions, mais les diffĂ©rentes voies de conception sont en constante Ă©volution vu le potentiel immense des aimants permanents pour les Ă©nergies vertes. En effet, il est possible avec cette technologie d’arriver Ă  une densitĂ© de puissance apprĂ©ciable, mais la gĂ©omĂ©trie des aimants permanents commerciaux est trĂšs limitĂ©e, dĂ» aux mĂ©thodes de fabrication actuelles. La possibilitĂ© d’avoir une plus grande libertĂ© sur la gĂ©omĂ©trie des aimants permanents dans les moteurs Ă©lectriques permettrait d’étudier davantage de conceptions diffĂ©rentes et d’optimiser l’efficacitĂ© en fonc-tion de l’application spĂ©cifique. La fabrication additive d’aimants permanents composites permet cette libertĂ© sur la gĂ©omĂ©trie, mais au coĂ»t de performance magnĂ©tique moindre des aimants. L’objectif principal de ce projet est donc de dĂ©terminer la meilleure mĂ©thode d’aimantation pour des aimants mĂ©talliques composites. En effet, comme les performances magnĂ©tiques de ces aimants ne sont pas aussi bonnes que celles des aimants fabriquĂ©s par frittage, il est primordial de maximiser leur potentiel en les aimantant de maniĂšre stratĂ©gique pour l’application visĂ©e. La recherche prĂ©sentĂ©e se concentre sur la technique d’aimantation pulsĂ©e par dĂ©charge de condensateurs. Plusieurs tests expĂ©rimentaux avec un circuit de dĂ©charge de condensateurs dĂ©jĂ  conçu et fabriquĂ© ont Ă©tĂ© effectuĂ©s pour en comprendre le fonctionnement et le rĂ©pliquer dans un logiciel de simulation par Ă©lĂ©ments finis spĂ©cialisĂ© pour les matĂ©riaux hystĂ©rĂ©tiques, i.e. le logiciel Altair Flux. Ce modĂšle permet d’étudier diffĂ©rentes stratĂ©gies d’aimantation pulsĂ©e sans avoir Ă  faire de tests en laboratoire ou sans fabriquer de nouveaux Ă©chantillons Ă  chaque fois. Il a d’abord fallu caractĂ©riser la rĂ©ponse magnĂ©tique de la bobine d’aimantation en fonction du courant qui y circule, pour ensuite caractĂ©riser Ă©lectriquement la totalitĂ© du circuit de dĂ©charge de condensateurs et finalement le rĂ©aliser dans le modĂšle numĂ©rique. En ayant rĂ©pliquĂ© l’outil d’aimantation pulsĂ©e, il a ensuite fallu caractĂ©riser Ă©lectriquement et magnĂ©tiquement les matĂ©riaux qui composent les Ă©chantillons d’aimants composites fournis par le CNRC, c’est Ă  dire l’aimant composite NdFeB/Al et les deux types de substrat : un d’acier et un d’aluminium. En comparant les rĂ©sultats expĂ©rimentaux et ceux issus de simulations du champ magnĂ©tique produit par l’aimant composite aprĂšs l'aimantation pulsĂ©e, il a Ă©tĂ© possible de vĂ©rifier que le modĂšle numĂ©rique rĂ©pliquait fidĂšlement les rĂ©sultats expĂ©rimentaux. ABSTRACT: ABSTRACT With the recent climate change emergency, the electrification of transportation has become a main focus to reduce carbon footprint. Indeed, green and renewable energy represent the future for the transport industry. This means a great challenge for an industry that is based almost solely on fossil fuel. Nonetheless, the only durable future for the transport industry is carbon neutrality. Many designs of electric motors already exist for automobiles and planes, but the technology and design methods are everchanging due to the immense potential of permanent magnets for green energies. With these magnets, we can reach compelling power densities, but their shape remain very basic due to the actual fabrication methods. With more flexibility on the geometry of permanant magnets, it would be possible to study different types of motor design and to optimize each design for a specific application. Additive manufacturing of composite permanent magnets unlocks this freedom, but at the cost of reduced magnetic performance. The main goal of this project is to define the best magnetization method for metallic composite permanent magnets. Since their magnetic performances are lower than traditional magnets fabricated by sintering, it is imperative to maximize their potential by magnetizing them properly for each application. The research presented in this thesis focuses on pulsed magnetization by capacitor discharge. Various experimental tests with an existing capacitor discharge circuit were made to understand and replicate the experimental setup in a finite element software program, i.e. Altair Flux, able to model accurately hysteretic materials. This numerical model enables the study of numerous strategies for pulsed magnetization without having to produce experimental tests or fabricating new samples. We started by identifying the magnetic behaviour of the magnetizing coil depending on the applied current, then we characterized the complete behaviour of the pulsed magnetization setup, and finally we replicated it in the numerical model. Then, we characterized the electrical and magnetic properties of the materials present in the composite permanent magnet samples produced at the National Research Council Canada. These sam-ples consist of composite NdFeB/Al permanent magnets deposited on two types of substrates : magnetic steel and aluminium. By comparing experimental and numerical results for the magnetic field produced by the magnetized samples after the pulsed magnetization, it was possible to verify that the numerical model could correctly replicate the experiments. This verification made possible the exploration by simulation of various approaches for pulsed magnetization of NdFeB/Al magnets. It was demonstrated that, for maximizing the magnetic field produced by the magnetized sample, it is not sufficient to maximize the vertical internal magnetization and its uniformity
    corecore