17 research outputs found

    Feasibility of a commercial smartphone application for dietary assessment in epidemiological research and comparison with 24-h dietary recalls

    No full text
    © 2018 The Author(s). Background: Dietary assessment methods that can provide high quality data while limiting participant burden and resource requirements in epidemiological research are highly sought after and continue to evolve. The use of mobile phone technology in research has increased rapidly over the last decade and offers multiple advantages to the researcher over traditional data collection methods. This study tested the acceptability and relative validity of a commercial smart phone application (app) for use as an epidemiological dietary assessment tool, compared with a traditional dietary assessment method. Methods: Study participants completed a 4-d food diary using a modified version of the Easy Diet Diary app and two 24-h dietary recalls during the same week, for comparison. At the end of data collection, participants completed a questionnaire on their experience with both methods. Average proportions of energy from macronutrients and fibre, iron, and calcium densities from the app and 24-h recalls were compared after log transformation, by calculating mean agreement, limits of agreement (LOA), and Pearson's correlations. The prevalence of dietary under-reporting was compared in each method using the Goldberg method. Results: A total of 50 adults (82% women) provided data for analysis (mean age, 31 y; mean BMI, 22.4 kg/m 2 ; 14% overweight or obese). Participant feedback showed high levels of acceptance of the app; 83% preferred using the app to completing 24-h dietary recalls. The average difference in energy intake (mean agreement) between methods was 268 kJ/d. For all intakes except alcohol, the average difference between methods was not significantly different from zero. Most limits of agreement were within an acceptable range. The prevalence of dietary misreporting was similar in both methods. Conclusions: These findings demonstrate good feasibility for applying this commercially-developed smartphone app in epidemiological research

    Low Dose Prenatal Ethanol Exposure Induces Anxiety-Like Behaviour and Alters Dendritic Morphology in the Basolateral Amygdala of Rat Offspring

    Get PDF
    Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control) or 6% (vol/vol) ethanol (EtOH) throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult) or 15 months (Aged) of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety - like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour

    The cryo-electron microscopy structure of human transcription factor IIH

    No full text
    Human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIH subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Additionally, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity
    corecore