126 research outputs found

    HERWIG 6.4 Release Note

    Get PDF
    A new release of the Monte Carlo program HERWIG (version 6.4) is now available. The main new features are: spin correlations between the production and decay of heavy fermions, i.e. top quarks, tau leptons and SUSY particles; polarization effects in SUSY production processes in lepton-lepton collisions; an interface to TAUOLA for tau decays; MSSM Higgs processes in lepton-lepton collisions

    Herwig++ 2.1 Release Note

    Get PDF
    A new release of the Monte Carlo program Herwig++ (version 2.1) is now available. This version includes a number of significant improvements including: an eikonal multiple parton-parton scattering model of the underlying event; the inclusion of Beyond the Standard Model (BSM) physics; and a new hadronic decay model tuned to LEP data. This version of the program is now fully ready for the simulation of events in hadron-hadron collisions

    Constraining compressed supersymmetry using leptonic signatures

    Get PDF
    We study the impact of the multi-lepton searches at the LHC on supersymmetric models with compressed mass spectra. For such models the acceptances of the usual search strategies are significantly reduced due to requirement of large effective mass and missing E_T. On the other hand, lepton searches do have much lower thresholds for missing E_T and p_T of the final state objects. Therefore, if a model with a compressed mass spectrum allows for multi-lepton final states, one could derive constraints using multi-lepton searches. For a class of simplified models we study the exclusion limits using ATLAS multi-lepton search analyses for the final states containing 2-4 electrons or muons with a total integrated luminosity of 1-2/fb at \sqrt{s}=7 TeV. We also modify those analyses by imposing additional cuts, so that their sensitivity to compressed supersymmetric models increase. Using the original and modified analyses, we show that the exclusion limits can be competitive with jet plus missing E_T searches, providing exclusion limits up to gluino masses of 1 TeV. We also analyse the efficiencies for several classes of events coming from different intermediate state particles. This allows us to assess exclusion limits in similar class of models with different cross sections and branching ratios without requiring a Monte Carlo simulation.Comment: 18 pages, 5 figure

    Herwig++ Status Report

    Get PDF
    Herwig++ is the successor of the event generator HERWIG. In its present version 2.2.1 it provides a program for full LHC event generation which is superior to the previous program in many respects. We briefly summarize its features and describe present work and some future plans

    Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System

    Get PDF
    Photoreception in the mammalian retina is not restricted to rods and cones but extends to a subset of retinal ganglion cells expressing the photopigment melanopsin (mRGCs). These mRGCs are known to drive such reflex light responses as circadian photoentrainment and pupillomotor movements. By contrast, until now there has been no direct assessment of their contribution to conventional visual pathways. Here, we address this deficit. Using new reporter lines, we show that mRGC projections are much more extensive than previously thought and extend across the dorsal lateral geniculate nucleus (dLGN), origin of thalamo-cortical projection neurons. We continue to show that this input supports extensive physiological light responses in the dLGN and visual cortex in mice lacking rods+cones (a model of advanced retinal degeneration). Moreover, using chromatic stimuli to isolate melanopsin-derived responses in mice with an intact visual system, we reveal strong melanopsin input to the similar to 40% of neurons in the LGN that show sustained activation to a light step. We demonstrate that this melanopsin input supports irradiance-dependent increases in the firing rate of these neurons. The implication that melanopsin is required to accurately encode stimulus irradiance is confirmed using melanopsin knockout mice. Our data establish melanopsin-based photoreception as a significant source of sensory input to the thalamo-cortical visual system, providing unique irradiance information and allowing visual responses to be retained even in the absence of rods+cones. These findings identify mRGCs as a potential origin for aspects of visual perception and indicate that they may support vision in people suffering retinal degeneration

    Inverse Current Source Density Method in Two Dimensions: Inferring Neural Activation from Multielectrode Recordings

    Get PDF
    The recent development of large multielectrode recording arrays has made it affordable for an increasing number of laboratories to record from multiple brain regions simultaneously. The development of analytical tools for array data, however, lags behind these technological advances in hardware. In this paper, we present a method based on forward modeling for estimating current source density from electrophysiological signals recorded on a two-dimensional grid using multi-electrode rectangular arrays. This new method, which we call two-dimensional inverse Current Source Density (iCSD 2D), is based upon and extends our previous one- and three-dimensional techniques. We test several variants of our method, both on surrogate data generated from a collection of Gaussian sources, and on model data from a population of layer 5 neocortical pyramidal neurons. We also apply the method to experimental data from the rat subiculum. The main advantages of the proposed method are the explicit specification of its assumptions, the possibility to include system-specific information as it becomes available, the ability to estimate CSD at the grid boundaries, and lower reconstruction errors when compared to the traditional approach. These features make iCSD 2D a substantial improvement over the approaches used so far and a powerful new tool for the analysis of multielectrode array data. We also provide a free GUI-based MATLAB toolbox to analyze and visualize our test data as well as user datasets
    corecore