60 research outputs found

    Group V Secreted Phospholipase A2 Induces the Release of Proangiogenic and Antiangiogenic Factors by Human Neutrophils

    Get PDF
    Secreted phospholipases A2 (sPLA2s) are extracellular enzymes that catalyze the release of free fatty acids and lysophospholipids from membrane phospholipids and also bind to different receptors (e.g., PLA2R1 or integrins). To date, 12 mammalian sPLA2s have been identified, which play a critical role in pathophysiological processes including inflammation and cancer. sPLA2s activate immune cells such as human neutrophils (PMNs) by enzymatic activity- or receptor-mediated mechanisms. In addition, human PMNs synthesize and store human group V (hGV) and human group X (hGX) sPLA2s in their granules, but only the former is released upon cellular activation. We investigated the effects of sPLA2s on the release of proangiogenic and antiangiogenic factors by PMNs. We found that exogenous hGV and hGX sPLA2s induce the release of vascular endothelial growth factor (VEGF)-A, angiopoietin 1 (Ang1), and CXCL8/IL-8. Only hGV induces the secretion of the antiangiogenic isoform of VEGF-A, namely, VEGF-A165b. While the release of VEGF-A, Ang1, and CXCL8/IL-8 was likely mediated by hGV enzymatic activity and/or binding to PLA2R1 and heparan sulfate proteoglycans, the release of VEGF-A165b requires the interaction with αVβ3 and α4β1 integrins. We also provide evidence that endogenous hGV released by N-formyl-met-leu-phe (fMLF)-activated PMNs is involved in the release of angiogenic factors. The translational relevance of these data is supported by our findings that hGV expression is increased in human samples of lung cancer which are infiltrated by PMNs. Overall, our results suggest that the hGV-neutrophil axis may play a relevant role in the modulation of cancer-related inflammation and angiogenesis

    Inhibition of histone methyltransferase DOT1L silences ER alpha gene and blocks proliferation of antiestrogen-resistant breast cancer cells

    Get PDF
    Breast cancer (BC) resistance to endocrine therapy results from constitutively active or aberrant estrogen receptor alpha (ER alpha) signaling, and ways to block ERa pathway in these tumors are sought after. We identified the H3K79 methyltransferase DOT1L as a novel cofactor of ER alpha in BC cell chromatin, where the two proteins colocalize to regulate estrogen target gene transcription. DOT1L blockade reduces proliferation of hormone-responsive BC cells in vivo and in vitro, consequent to cell cycle arrest and apoptotic cell death, with widespread effects on ER-dependent gene transcription, including ER alpha and FOXA1 gene silencing. Antiestrogen-resistant BC cells respond to DOT1L inhibition also in mouse xenografts, with reduction in ER alpha levels, H3K79 methylation, and tumor growth. These results indicate that DOT1L is an exploitable epigenetic target for treatment of endocrine therapy-resistant ER alpha-positive BCs

    The T.O.S.C.A. Project: Research, Education and Care

    Get PDF
    Despite recent and exponential improvements in diagnostic- therapeutic pathways, an existing “GAP” has been revealed between the “real world care” and the “optimal care” of patients with chronic heart failure (CHF). We present the T.O.S.CA. Project (Trattamento Ormonale dello Scompenso CArdiaco), an Italian multicenter initiative involving different health care professionals and services aiming to explore the CHF “metabolic pathophysiological model” and to improve the quality of care of HF patients through research and continuing medical education
    corecore