1,999 research outputs found

    Extended Reissner-Nordstr\"om solutions sourced by dynamical torsion

    Get PDF
    We find a new exact vacuum solution in the framework of the Poincar\'e Gauge field theory with massive torsion. In this model, torsion operates as an independent field and introduces corrections to the vacuum structure present in General Relativity. The new static and spherically symmetric configuration shows a Reissner-Nordstr\"om-like geometry characterized by a spin charge. It extends the known massless torsion solution to the massive case. The corresponding Reissner-Nordstr\"om-de Sitter solution is also compatible with a cosmological constant and additional U(1) gauge fields.Comment: 12 pages, 0 figures, minor changes, references adde

    New torsion black hole solutions in Poincar\'e gauge theory

    Get PDF
    We derive a new exact static and spherically symmetric vacuum solution in the framework of the Poincar\'e gauge field theory with dynamical massless torsion. This theory is built in such a form that allows to recover General Relativity when the first Bianchi identity of the model is fulfilled by the total curvature. The solution shows a Reissner-Nordstr\"om type geometry with a Coulomb-like curvature provided by the torsion field. It is also shown the existence of a generalized Reissner-Nordstr\"om-de Sitter solution when additional electromagnetic fields and/or a cosmological constant are coupled to gravity.Comment: 14 pages, 0 figures, minor changes, references adde

    Einstein-Yang-Mills-Lorentz black holes

    Get PDF
    Different black hole solutions of the coupled Einstein-Yang-Mills equations have been well known for a long time. They have attracted much attention from mathematicians and physicists since their discovery. In this work, we analyze black holes associated with the gauge Lorentz group. In particular, we study solutions which identify the gauge connection with the spin connection. This ansatz allows one to find exact solutions to the complete system of equations. By using this procedure, we show the equivalence between the Yang-Mills-Lorentz model in curved space-time and a particular set of extended gravitational theories.Comment: 10 pages, 0 figures, minor changes, references added. It matches the version published in Eur. Phys. J.

    Correspondence between Einstein-Yang-Mills-Lorentz systems and dynamical torsion models

    Get PDF
    In the framework of Einstein-Yang-Mills theories, we study the gauge Lorentz group and establish a particular correspondence between this case and a certain class of theories with torsion within Riemann-Cartan space-times. This relation is specially useful in order to simplify the problem of finding exact solutions to the Einstein-Yang-Mills equations. The applicability of the method is divided into two approaches: one associated with the Lorentz group SO(1,n-1) of the space-time rotations and another one with its subgroup SO(n-2). Solutions for both cases are presented by the explicit use of this correspondence and, interestingly, for the last one by imposing on our ansatz the same kind of rotation and reflection symmetry properties as for a nonvanishing space-time torsion. Although these solutions were found in previous literature by a different approach, our method provides an alternative way to obtain them and it may be used in future research to find other exact solutions within this theory.Comment: 10 pages, 0 figures, minor changes, references added. It matches the version published in Phys. Rev.

    Three-body bound states with zero-range interaction in the Bethe-Salpeter approach

    Full text link
    The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding energies, Bethe-Salpeter amplitudes and light-front wave functions. Three different regimes are analyzed: ({\it i}) For weak enough two-body interaction the three-body system is unbound. ({\it ii}) For stronger two-body interaction a three-body bound state appears. It provides an interesting example of a deeply bound Borromean system. ({\it iii}) For even stronger two-body interaction this state becomes unphysical with a negative mass squared. However, another physical (excited) state appears, found previously in light-front calculations. The Bethe-Salpeter approach implicitly incorporates three-body forces of relativistic origin, which are attractive and increase the binding energy.Comment: 13 pages, 7 figure

    Stability in quadratic torsion theories

    Get PDF
    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from the most general Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when torsion vanishes and investigating the behaviour of the vector and pseudovector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier

    Bound state structure and electromagnetic form factor beyond the ladder approximation

    Full text link
    We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and the elastic electromagnetic form factor beyond the impulse approximation, with the inclusion of the two-body current, generated by the cross-ladder kernel, are computed. The valence wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.Comment: 19 pages, 6 figures, submitted to Phys. Lett.

    A cerebral bridge from olfactory cognition to spatial navigation

    Get PDF
    An evolutionary paradox is the variability of the olfactory bulb size, in contrast to the other brain regions, which are sized proportionally to the peripheral function. This variability seems to be the result of selection for the olfactory function. This disagreement may derive from considering smell as a sense linked to odorous discrimination. In many vertebrates and in terrestrial and marine mammals, the sense of smell has evolved into functions related to the eco-localization. So, if the olfactory function involves spatial perception and navigation, this, couldexplain the proportional discrepancy between the olfactory bulb and olfactory cortex. Humans are able to discriminate a spatial position as a function of olfactory cues. Vice versa, in neurodegenerative syndromes the orientation capacity and olfactory perception are impaired. This leads us to think that could be a common cross-modal processing, of phylogenetic origin, which links olfactory perception and spatial orientation. Starting from these theoretical assumptions, we conducted a basic research, on 100 healthy subjects, investigating, through both behavioral and electroencephalographic data, the connection between spatial memory span and olfactory spatial memory span. Subjects were assessed through a three-condition task: normal Corsi Block Test (CBT), ‘Olfactory’ Block Test (OBT) and a ‘Semantic-Olfactory’ Block Test (SOBT). CBT consisted in a test on spatial memory span; OBT consisted in a presentation a spatial sequences of 9 different odorants (i.e., Eucalyptol, Carvone, Eugenol, Isoamyl Acetate, Geraniol, Phenethyl Alcohol, Acetophenone, Cinnamon, Hexanal) instilled on paper square not recognizable by any sign, positioned on a CBT, and showed in a spatial navigation way, and SOBT consisted of a semantic labelled of olfactory spatial navigation. A GLM repeated measure highlighted significant differences during the three conditions. Subjects had different SPANs due to different conditions. The Semantic olfactory memory SPAN was inferior respect Olfactory span and Spatial Span. Furthermore was found a significant positive correlation between the three condition. The 5 subjects with higher SPAN scores, 5 with medium scores and the 5 subjects with lower SPAN scores were recruited to investigate ERP components elicited during the cross-modal task. Subjects had to perform, during a high-density EEG recording, an olfactory task (administered through the device US2017127971 (A1) “? 2017-05-11), an EEG Posner spatial cueing task and a go/no-go olfactory semantic categorization task. The results of this study will be discussed in light of a theoretical connection between these three aspects of cortical functions that seem strongly interconnected

    XISMuS x-ray fluorescence imaging software for multiple samples

    Get PDF
    X-rays have long been used as a non-destructive analytical technique to investigate artefacts and objects that can be considered cultural heritage. With the unceasing development of technologies and miniaturization of electronics, X-ray Fluorescence (XRF) analysis has undergone a natural evolution, being now extensively used in a bi-dimensional manner, scanning whole surfaces and generating astonishing amounts of data. Evaluating all this data demands a software distribution or at least a stand-alone algorithm. The former being an obvious choice, as software are easy to install and the learning curve is fast. Moreover, developing a proprietary algorithm is time consuming and not always needed for the average user. In this scope, XIMuS was developed as an ad hoc software for macro-XRF analysis (MA-XRF), with an intuitive and simple graphical user interface (GUI). The software provides several built-in tools, staple for the interpretation of X-ray fluorescence data, automated data evaluation and some novelty functionalities as data stitching. XISMuS creates an iterative user database as samples are loaded and compiled through usage, facilitating navigation through different datasets. Simultaneous samples can be loaded in separate instances for comparison purposes. Elemental mapping is made simple, the methods available are described and have each one an application for fast, balanced or precise calculations, supporting parallel computing. Ratios between elements in specific regions of the image can be measured while a region-derived spectrum is shown and updated live. Image correlation can be performed supporting the usage of threshold filters and/or region selection. Batch exporting is also available, cross-normalizing the input datasets
    • …
    corecore