5 research outputs found

    Programmed Cell Death in the Apical Ganglion During Larval Metamorphosis of the Marine Mollusc Ilyanassa obsoleta

    Get PDF
    The apical ganglion (AG) of larval caenogastropods, such as Ilyanassa obsoleta, houses a sensory organ, contains five serotonergic neurons, innervates the muscular and ciliary components of the velum, and sends neurites into a neuropil that lies atop the cerebral commissure. During metamorphosis, the AG is lost. This loss had been postulated to occur through some form of programmed cell death (PCD), but it is possible for cells within the AG to be respecified or to migrate into adjacent ganglia. Evidence from histological sections is supported by results from a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which indicate that cells of the AG degenerate by PCD. PCD occurs after metamorphic induction by serotonin or by inhibition of nitric oxide synthase (NOS) activity. Cellular degeneration and nuclear condensation and loss were observed within 12 h of metamorphic induction by NOS inhibition and occur before loss of the velar lobes, the ciliated tissue used for larval swimming and feeding. Velar disintegration happens more rapidly after metamorphic induction by serotonin than by 7-nitroinda-zole, a NOS inhibitor. Loss of the AG was complete by 72 h after induction. Spontaneous loss of the AG in older competent larvae may arise from a natural decrease in endogenous NOS activity, giving rise to the tendency of aging larvae to display spontaneous metamorphosis in culture

    Induction of metamorphosis in the marine gastropod, Ilyanassa obsoleta: 5HT, NO and Programmed Cell Death.

    Get PDF
    The central nervous system (CNS) of a metamorphically competent larva of the caenogastropod Ilyanassa obsoleta contains a medial, unpaired apical ganglion (AG) of approximately 25 neurons that lies above the commissure connecting the paired cerebral ganglia. The AG, also known as the cephalic or apical sensory organ (ASO), contains numerous sensory neurons and innervates the ciliated velar lobes, the larval swimming and feeding structures. Before metamorphosis, the AG contains 5 serotonergic neurons and exogenous serotonin can induce metamorphosis in competent larvae. The AG appears to be a purely larval structure as it disappears within 3 days of metamorphic induction. In competent larvae, most neurons of the AG display nitric oxide synthase (NOS)-like immunoreactivity and inhibition of NOS activity can induce larval metamorphose. Because nitric oxide (NO) can prevent cells from undergoing apoptosis, a form of programmed cell death (PCD), we hypothesize that inhibition of NOS activity triggers the loss of the AG at the beginning of the metamorphic process. Within 24 hours of metamorphic induction, cellular changes that are typical of the early stages of PCD are visible in histological sections and results of a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in metamorphosing larvae show AG nuclei containing fragmented DNA, supporting our hypothesis
    corecore