40 research outputs found

    Oxidizes Low Density Lipoprotein Cytoxicity and Vascular Diseases

    Get PDF
    The formation of oxidized low density lipoprotien (oxLDL) within atherosclerotic plaques is a significant event, which appears to drive the transition from fatty streaks to advanced complex plaque cytotoxic agent that triggers a number of competing cell death machanisms

    Expression profiling of human renal carcinomas with functional taxonomic analysis

    Get PDF
    BACKGROUND: Molecular characterization has contributed to the understanding of the inception, progression, treatment and prognosis of cancer. Nucleic acid array-based technologies extend molecular characterization of tumors to thousands of gene products. To effectively discriminate between tumor sub-types, reliable laboratory techniques and analytic methods are required. RESULTS: We derived mRNA expression profiles from 21 human tissue samples (eight normal kidneys and 13 kidney tumors) and two pooled samples using the Affymetrix GeneChip platform. A panel of ten clustering algorithms combined with four data pre-processing methods identified a consensus cluster dendrogram in 18 of 40 analyses and of these 16 used a logarithmic transformation. Within the consensus dendrogram the expression profiles of the samples grouped according to tissue type; clear cell and chromophobe carcinomas displayed distinctly different gene expression patterns. By using a rigorous statistical selection based method we identified 355 genes that showed significant (p < 0.001) gene expression changes in clear cell renal carcinomas compared to normal kidney. These genes were classified with a tool to conceptualize expression patterns called "Functional Taxonomy". Each tumor type had a distinct "signature," with a high number of genes in the categories of Metabolism, Signal Transduction, and Cellular and Matrix Organization and Adhesion. CONCLUSIONS: Affymetrix GeneChip profiling differentiated clear cell and chromophobe carcinomas from one another and from normal kidney cortex. Clustering methods that used logarithmic transformation of data sets produced dendrograms consistent with the sample biology. Functional taxonomy provided a practical approach to the interpretation of gene expression data

    The influence of tumor size and environment on gene expression in commonly used human tumor lines

    Get PDF
    BACKGROUND: The expression profiles of solid tumor models in rodents have been only minimally studied despite their extensive use to develop anticancer agents. We have applied RNA expression profiling using Affymetrix U95A GeneChips to address fundamental biological questions about human tumor lines. METHODS: To determine whether gene expression changed significantly as a tumor increased in size, we analyzed samples from two human colon carcinoma lines (Colo205 and HCT-116) at three different sizes (200 mg, 500 mg and 1000 mg). To investigate whether gene expression was influenced by the strain of mouse, tumor samples isolated from C.B-17 SCID and Nu/Nu mice were also compared. Finally, the gene expression differences between tissue culture and in vivo samples were investigated by comparing profiles from lines grown in both environments. RESULTS: Multidimensional scaling and analysis of variance demonstrated that the tumor lines were dramatically different from each other and that gene expression remained constant as the tumors increased in size. Statistical analysis revealed that 63 genes were differentially expressed due to the strain of mouse the tumor was grown in but the function of the encoded proteins did not link to any distinct biological pathways. Hierarchical clustering of tissue culture and xenograft samples demonstrated that for each individual tumor line, the in vivo and in vitro profiles were more similar to each other than any other profile. We identified 36 genes with a pattern of high expression in xenograft samples that encoded proteins involved in extracellular matrix, cell surface receptors and transcription factors. An additional 17 genes were identified with a pattern of high expression in tissue culture samples and encoded proteins involved in cell division, cell cycle and RNA production. CONCLUSIONS: The environment a tumor line is grown in can have a significant effect on gene expression but tumor size has little or no effect for subcutaneously grown solid tumors. Furthermore, an individual tumor line has an RNA expression pattern that clearly defines it from other lines even when grown in different environments. This could be used as a quality control tool for preclinical oncology studies

    Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT

    Get PDF
    Assessment of disease burden and drug efficacy is achieved preclinically using high resolution micro computed tomography (CT). However, micro-CT is not applicable to clinical human imaging due to operating at high dose. In addition, the technology differences between micro-CT and standard clinical CT prevent direct translation of preclinical applications. The current proof-of-concept study presents spectral photon-counting CT as a clinically translatable, molecular imaging tool by assessing contrast uptake in an ex-vivo mouse model of pulmonary tuberculosis (TB). Iodine, a common contrast used in clinical CT imaging, was introduced into a murine model of TB. The excised mouse lungs were imaged using a standard micro-CT subsystem (SuperArgus) and the contrast enhanced TB lesions quantified. The same lungs were imaged using a spectral photoncounting CT system (MARS small-bore scanner). Iodine and soft tissues (water and lipid) were materially separated, and iodine uptake quantified. The volume of the TB infection quantified by spectral CT and micro-CT was found to be 2.96 mm(3) and 2.83 mm(3), respectively. This proof-of-concept study showed that spectral photon-counting CT could be used as a predictive preclinical imaging tool for the purpose of facilitating drug discovery and development. Also, as this imaging modality is available for human trials, all applications are translatable to human imaging. In conclusion, spectral photon-counting CT could accelerate a deeper understanding of infectious lung diseases using targeted pharmaceuticals and intrinsic markers, and ultimately improve the efficacy of therapies by measuring drug delivery and response to treatment in animal models and later in humans

    Neopterin, Inflammation, and Oxidative Stress: What Could We Be Missing?

    No full text
    Neopterin has been extensively used as a clinical marker of immune activation during inflammation in a wide range of conditions and stresses. However, the analysis of neopterin alone neglects the cellular reactions that generate it in response to interferon-&gamma;. Neopterin is the oxidation product of 7,8-dihydroneopterin, which is a potent antioxidant generated by interferon-&gamma;-activated macrophages. 7,8-Dihydroneopterin can protect macrophage cells from a range of oxidants through a scavenging reaction that generates either neopterin or dihydroxanthopterin, depending on the oxidant. Therefore, plasma and urinary neopterin levels are dependent on both macrophage activation to generate 7,8-dihydroneopterin and subsequent oxidation to neopterin. This relationship is clearly shown in studies of exercise and impact-induced injury during intense contact sport. Here, we argue that neopterin and total neopterin, which is the combined value of 7,8-dihydroneopterin and neopterin, could provide a more comprehensive analysis of clinical inflammation than neopterin alone
    corecore