73 research outputs found

    MARS spectral molecular imaging of lamb tissue: data collection and image analysis

    Full text link
    Spectral molecular imaging is a new imaging technique able to discriminate and quantify different components of tissue simultaneously at high spatial and high energy resolution. Our MARS scanner is an x-ray based small animal CT system designed to be used in the diagnostic energy range (20 to 140 keV). In this paper, we demonstrate the use of the MARS scanner, equipped with the Medipix3RX spectroscopic photon-processing detector, to discriminate fat, calcium, and water in tissue. We present data collected from a sample of lamb meat including bone as an illustrative example of human tissue imaging. The data is analyzed using our 3D Algebraic Reconstruction Algorithm (MARS-ART) and by material decomposition based on a constrained linear least squares algorithm. The results presented here clearly show the quantification of lipid-like, water-like and bone-like components of tissue. However, it is also clear to us that better algorithms could extract more information of clinical interest from our data. Because we are one of the first to present data from multi-energy photon-processing small animal CT systems, we make the raw, partial and fully processed data available with the intention that others can analyze it using their familiar routines. The raw, partially processed and fully processed data of lamb tissue along with the phantom calibration data can be found at [http://hdl.handle.net/10092/8531].Comment: 11 pages, 6 fig

    The influence of tumor size and environment on gene expression in commonly used human tumor lines

    Get PDF
    BACKGROUND: The expression profiles of solid tumor models in rodents have been only minimally studied despite their extensive use to develop anticancer agents. We have applied RNA expression profiling using Affymetrix U95A GeneChips to address fundamental biological questions about human tumor lines. METHODS: To determine whether gene expression changed significantly as a tumor increased in size, we analyzed samples from two human colon carcinoma lines (Colo205 and HCT-116) at three different sizes (200 mg, 500 mg and 1000 mg). To investigate whether gene expression was influenced by the strain of mouse, tumor samples isolated from C.B-17 SCID and Nu/Nu mice were also compared. Finally, the gene expression differences between tissue culture and in vivo samples were investigated by comparing profiles from lines grown in both environments. RESULTS: Multidimensional scaling and analysis of variance demonstrated that the tumor lines were dramatically different from each other and that gene expression remained constant as the tumors increased in size. Statistical analysis revealed that 63 genes were differentially expressed due to the strain of mouse the tumor was grown in but the function of the encoded proteins did not link to any distinct biological pathways. Hierarchical clustering of tissue culture and xenograft samples demonstrated that for each individual tumor line, the in vivo and in vitro profiles were more similar to each other than any other profile. We identified 36 genes with a pattern of high expression in xenograft samples that encoded proteins involved in extracellular matrix, cell surface receptors and transcription factors. An additional 17 genes were identified with a pattern of high expression in tissue culture samples and encoded proteins involved in cell division, cell cycle and RNA production. CONCLUSIONS: The environment a tumor line is grown in can have a significant effect on gene expression but tumor size has little or no effect for subcutaneously grown solid tumors. Furthermore, an individual tumor line has an RNA expression pattern that clearly defines it from other lines even when grown in different environments. This could be used as a quality control tool for preclinical oncology studies

    Sodium-Dependent Vitamin C Transporter 2 (SVCT2) Expression and Activity in Brain Capillary Endothelial Cells after Transient Ischemia in Mice

    Get PDF
    Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2) was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO) in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2–5 days. Radioactive uptake assays using 14C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy

    Drug-induced senescence bystander proliferation in prostate cancer cells in vitro and in vivo

    Get PDF
    Senescence is a distinct cellular response induced by DNA-damaging agents and other sublethal stressors and may provide novel benefits in cancer therapy. However, in an ageing model, senescent fibroblasts were found to stimulate the proliferation of cocultured cells. To address whether senescence induction in cancer cells using chemotherapy induces similar effects, we used GFP-labelled prostate cancer cell lines and monitored their proliferation in the presence of proliferating or doxorubicin-induced senescent cancer cells in vitro and in vivo. Here, we show that the presence of senescent cancer cells increased the proliferation of cocultured cells in vitro through paracrine signalling factors, but this proliferative effect was significantly less than that seen with senescent fibroblasts. In vivo, senescent cancer cells failed to increase the establishment, growth or proliferation of LNCaP and DU145 xenografts in nude mice. Senescent cells persisted as long as 5 weeks in tumours. Our results demonstrate that although drug-induced senescent cancer cells stimulate the proliferation of bystander cells in vitro, this does not significantly alter the growth of tumours in vivo. Coupled with clinical observations, these data suggest that the proliferative bystander effects of senescent cancer cells are negligible and support the further development of senescence induction as therapy

    Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT

    Get PDF
    Assessment of disease burden and drug efficacy is achieved preclinically using high resolution micro computed tomography (CT). However, micro-CT is not applicable to clinical human imaging due to operating at high dose. In addition, the technology differences between micro-CT and standard clinical CT prevent direct translation of preclinical applications. The current proof-of-concept study presents spectral photon-counting CT as a clinically translatable, molecular imaging tool by assessing contrast uptake in an ex-vivo mouse model of pulmonary tuberculosis (TB). Iodine, a common contrast used in clinical CT imaging, was introduced into a murine model of TB. The excised mouse lungs were imaged using a standard micro-CT subsystem (SuperArgus) and the contrast enhanced TB lesions quantified. The same lungs were imaged using a spectral photoncounting CT system (MARS small-bore scanner). Iodine and soft tissues (water and lipid) were materially separated, and iodine uptake quantified. The volume of the TB infection quantified by spectral CT and micro-CT was found to be 2.96 mm(3) and 2.83 mm(3), respectively. This proof-of-concept study showed that spectral photon-counting CT could be used as a predictive preclinical imaging tool for the purpose of facilitating drug discovery and development. Also, as this imaging modality is available for human trials, all applications are translatable to human imaging. In conclusion, spectral photon-counting CT could accelerate a deeper understanding of infectious lung diseases using targeted pharmaceuticals and intrinsic markers, and ultimately improve the efficacy of therapies by measuring drug delivery and response to treatment in animal models and later in humans

    EGFR-targeting drugs in combination with cytotoxic agents: from bench to bedside, a contrasted reality

    Get PDF
    The clinical experience recently reported with epidermal growth factor receptor (EGFR)-targeting drugs confirms the synergistic interactions observed between these compounds and conventional cytotoxic agents, which were previously established at the preclinical stage. There are, however, examples of major gaps between the bench and the bedside. Particularly demonstrative is the failure of the tyrosine kinase inhibitors (TKIs) (gefitinib and erlotinib) combined with chemotherapy in pretreated nonsmall cell lung cancer patients. These discrepancies can be due to several factors such as the methodology used to evaluate TKI plus cytotoxic agent combinations in preclinical models and the insufficient consideration given to the importance of the drug sequences for the tested combinations. Recent advances in understanding the biologic basis of acquired resistance to these agents have great potential to improve their clinical effectiveness. The purpose of this review is to critically examine the experimental conditions of the preclinical background for anti-EGFR drug–cytotoxic agent combinations and to attempt to explain the gap between clinical observations and preclinical data

    SPARC: a matricellular regulator of tumorigenesis

    Get PDF
    Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore