8 research outputs found

    Physical modelling of arctic coastlines-progress and limitations

    Get PDF
    Permafrost coastlines represent a large portion of the world's coastal area and these areas have become increasingly vulnerable in the face of climate change. The predominant mechanism of coastal erosion in these areas has been identified through several observational studies as thermomechanical erosion-a joint removal of sediment through the melting of interstitial ice (thermal energy) and abrasion from incoming waves (mechanical energy). However, further developments are needed looking how common design parameters in coastal engineering (such as wave height, period, sediment size, etc.) contribute to the process. This paper presents the current state of the art with the objective of establishing the necessary research background to develop a process-based approach to predicting permafrost erosion. To that end, an overarching framework is presented that includes all major, erosion-relevant processes, while delineating means to accomplish permafrost modelling in experimental studies. Preliminary modelling of generations zero and one models, within this novel framework, was also performed to allow for early conclusions as to how well permafrost erosion can currently be modelled without more sophisticated setups. © 2020 by the authors

    Large-scale laboratory experiments on mussel dropper lines in ocean surface waves

    Get PDF
    The rapid growth of marine aquaculture around the world accentuates issues of sustainabil-ity and environmental impacts of large-scale farming systems. One potential mitigation strategy is to relocate to more energetic offshore locations. However, research regarding the forces which waves and currents impose on aquaculture structures in such conditions is still scarce. The present study aimed at extending the knowledge related to live blue mussels (Mytilus edulis), cultivated on dropper lines, by unique, large-scale laboratory experiments in the Large Wave Flume of the Coastal Research Center in Hannover, Germany. Nine-months-old live dropper lines and a surrogate of 2.0 m length each are exposed to regular waves with wave heights between 0.2 and 1.0 m and periods between 1.5 and 8.0 s. Force time histories are recorded to investigate the inertia and drag characteristics of live mussel and surrogate dropper lines. The surrogate dropper line was developed from 3D scans of blue mussel dropper lines, using the surface descriptor Abbott–Firestone Curve as quality parameter. Pull-off tests of individual mussels are conducted that reveal maximum attachment strength ranges of 0.48 to 10.55 N for mussels that had medium 3.04 cm length, 1.60 cm height and 1.25 cm width. Mean drag coefficients of CD = 3.9 were found for live blue mussel lines and CD = 3.4 for the surrogate model, for conditions of Keulegan–Carpenter number (KC) 10 to 380, using regular wave tests. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    A new system design for the cultivation of extractive species at exposed sites - Part 2: Experimental modelling in waves and currents

    Get PDF
    Aquaculture is projected to be a major supplier of marine proteins to large parts of the global population. This includes bivalves, which have a high potential to offset protein deficits, as they are highly adaptable to varying water temperature, salinity, desiccation, and oxygen conditions. This work is part of a two-piece contribution on novel marine aquaculture technology and details physical laboratory tests of a new cultivation system for bivalve farming called “Shellfish Tower”. The tested 1:20 model consists of a rectangular cage (2 × 2 m prototype scale) with a central buoyancy element and a height of 2 – 4 m. Testing was done in a current flume as well as a wave basin for current velocities between 0.4 – 2.2 m/s and wave heights of 1.6 to 5.0 m with periods between 5 to 14 s. The tests were conducted to prove the feasibility and functionality of this aquaculture system, which is usable for the collection and cultivation of mussel spat as well as for the grow-out of oysters, scallops, and seaweed in marine environments. Tests carried out in a current flume revealed that drag coefficients decrease with increasing current velocities, and range from Cd=0.5 to 2.5, while the mooring inclination increases from 12° to 84° with increasing flow velocity, which is highly dependant on the buoyancy related pretension. The examination of the mooring line tensions recorded in a wave basin showed that the largest values of snap-induced tension were up to 10 times that of the semi-static tension. The maximum-recorded tension on the system was 48 kN for a single and 89 kN for a double configuration, compared to non-snap tension values, which were in the range of 6 – 10 kN. The insights gathered in this study will inform the future design of aquaculture systems in high-energy environments and allow for an integration into numerical models

    Physical Modelling of Arctic Coastlines - Progress and Limitations

    Get PDF
    Permafrost coastlines represent a large portion of the world’s coastal area and these areas have become increasingly vulnerable in the face of climate change. The predominant mechanism of coastal erosion in these areas has been identified through several observational studies as thermomechanical erosion—a joint removal of sediment through the melting of interstitial ice (thermal energy) and abrasion from incoming waves (mechanical energy). However, further developments are needed looking how common design parameters in coastal engineering (such as wave height, period, sediment size, etc.) contribute to the process. This paper presents the current state of the art with the objective of establishing the necessary research background to develop a process-based approach to predicting permafrost erosion. To that end, an overarching framework is presented that includes all major, erosion-relevant processes, while delineating means to accomplish permafrost modelling in experimental studies. Preliminary modelling of generations zero and one models, within this novel framework, was also performed to allow for early conclusions as to how well permafrost erosion can currently be modelled without more sophisticated setups

    Large-Scale Laboratory Experiments on Mussel Dropper Lines in Ocean Surface Waves

    No full text
    The rapid growth of marine aquaculture around the world accentuates issues of sustainability and environmental impacts of large-scale farming systems. One potential mitigation strategy is to relocate to more energetic offshore locations. However, research regarding the forces which waves and currents impose on aquaculture structures in such conditions is still scarce. The present study aimed at extending the knowledge related to live blue mussels (Mytilus edulis), cultivated on dropper lines, by unique, large-scale laboratory experiments in the Large Wave Flume of the Coastal Research Center in Hannover, Germany. Nine-months-old live dropper lines and a surrogate of 2.0 m length each are exposed to regular waves with wave heights between 0.2 and 1.0 m and periods between 1.5 and 8.0 s. Force time histories are recorded to investigate the inertia and drag characteristics of live mussel and surrogate dropper lines. The surrogate dropper line was developed from 3D scans of blue mussel dropper lines, using the surface descriptor Abbott–Firestone Curve as quality parameter. Pull-off tests of individual mussels are conducted that reveal maximum attachment strength ranges of 0.48 to 10.55 N for mussels that had medium 3.04 cm length, 1.60 cm height and 1.25 cm width. Mean drag coefficients of CD = 3.9 were found for live blue mussel lines and CD = 3.4 for the surrogate model, for conditions of Keulegan–Carpenter number (KC) 10 to 380, using regular wave tests

    Drag and inertia coefficients of live and surrogate shellfish dropper lines under steady and oscillatory flow

    Get PDF
    Against the background of a drastically increased demand of marine proteins, off-bottom, bivalve aquaculture, provides significant potential for production growth when moved into more energetic marine waters. Hence, research, industry and politics are currently proposing the development of new offshore sites. The highly energetic conditions at these sites present a challenging environment for bivalve aquaculture. In this work, physical experiments of suspended bivalves provide new knowledge on the commonly used design parameters: the drag and inertia coefficients. Live bivalves and manufactured surrogate models at a 1:1 scale were tested in a towing tank as well as under waves. The drag coefficient of live blue mussels was determined to be Cd = 1.6 for Reynolds numbers between 2.3 Ă— 104 and 1.4 Ă— 105. The inertia coefficient obtained from the wave tests was Cm = 2.1 for Keulegan Carpenter numbers KC < 10. In a pursuit to better understand the differences between live mussels and surrogates in laboratory conditions, the analysis revealed that appropriate surrogates can be identified. A method to determine the characteristic diameter of mussel dropper lines is suggested. The results facilitate the future design of aquaculture systems in high-energy environments and allow for an integration into numerical models
    corecore