614 research outputs found

    Analytical results for the confinement mechanism in QCD_3

    Get PDF
    We present analytical methods for investigating the interaction of two heavy quarks in QCD_3 using the effective action approach. Our findings result in explicit expressions for the static potentials in QCD_3 for long and short distances. With regard to confinement, our conclusion reflects many features found in the more realistic world of QCD_4.Comment: 24 pages, uses REVTe

    Quantum effective actions from nonperturbative worldline dynamics

    Full text link
    We demonstrate the feasibility of a nonperturbative analysis of quantum field theory in the worldline formalism with the help of an efficient numerical algorithm. In particular, we compute the effective action for a super-renormalizable field theory with cubic scalar interaction in four dimensions in quenched approximation (small-NfN_f expansion) to all orders in the coupling. We observe that nonperturbative effects exert a strong influence on the infrared behavior, rendering the massless limit well defined in contrast to the perturbative expectation. Our numerical method is based on a direct use of probability distributions for worldline ensembles, preserves all Euclidean spacetime symmetries, and thus represents a new nonperturbative tool for an investigation of continuum quantum field theory.Comment: 33 pages, 10 figure

    Absence of Fragmentation in Two-Dimensional Bose-Einstein Condensation

    Get PDF
    We investigate the possibility that the BEC-like phenomena recently detected on two-dimensional finite trapped systems consist of fragmented condensates. We derive and diagonalize the one-body density matrix of a two-dimensional isotropically trapped Bose gas at finite temperature. For the ideal gas, the procedure reproduces the exact harmonic-oscillator eigenfunctions and the Bose distribution. We use a new collocation-minimization method to study the interacting gas in the Hartree-Fock approximation and obtain a ground-state wavefunction and condensate fraction consistent with those obtained by other methods. The populations of the next few eigenstates increase at the expense of the ground state but continue to be negligible; this supports the conclusion that two-dimensional BEC is into a single state.Comment: 6 pages, 1 figur

    Light Cone Condition for a Thermalized QED Vacuum

    Get PDF
    Within the QED effective action approach, we study the propagation of low-frequency light at finite temperature. Starting from a general effective Lagrangian for slowly varying fields whose structure is solely dictated by Lorentz covariance and gauge invariance, we derive the light cone condition for light propagating in a thermalized QED vacuum. As an application, we calculate the velocity shifts, i.e., refractive indices of the vacuum, induced by thermalized fermions to one loop. We investigate various temperature domains and also include a background magnetic field. While low-temperature effects to one loop are exponentially damped by the electron mass, there exists a maximum velocity shift of δvmax2=α/(3π)-\delta v^2_{max}=\alpha/(3\pi) in the intermediate-temperature domain TmT\sim m.Comment: 9 pages, 3 figures, REVTeX, typos corrected, final version to appear in Phys. Rev.

    Ice Age Epochs and the Sun's Path Through the Galaxy

    Full text link
    We present a calculation of the Sun's motion through the Milky Way Galaxy over the last 500 million years. The integration is based upon estimates of the Sun's current position and speed from measurements with Hipparcos and upon a realistic model for the Galactic gravitational potential. We estimate the times of the Sun's past spiral arm crossings for a range in assumed values of the spiral pattern angular speed. We find that for a difference between the mean solar and pattern speed of Omega_Sun - Omega_p = 11.9 +/- 0.7 km/s/kpc the Sun has traversed four spiral arms at times that appear to correspond well with long duration cold periods on Earth. This supports the idea that extended exposure to the higher cosmic ray flux associated with spiral arms can lead to increased cloud cover and long ice age epochs on Earth.Comment: 14 pages, 3 figures, accepted for publication in Ap

    Exact flow equation for bound states

    Full text link
    We develop a formalism to describe the formation of bound states in quantum field theory using an exact renormalization group flow equation. As a concrete example we investigate a nonrelativistic field theory with instantaneous interaction where the flow equations can be solved exactly. However, the formalism is more general and can be applied to relativistic field theories, as well. We also discuss expansion schemes that can be used to find approximate solutions of the flow equations including the essential momentum dependence.Comment: 22 pages, references added, published versio

    Strong laser fields as a probe for fundamental physics

    Full text link
    Upcoming high-intensity laser systems will be able to probe the quantum-induced nonlinear regime of electrodynamics. So far unobserved QED phenomena such as the discovery of a nonlinear response of the quantum vacuum to macroscopic electromagnetic fields can become accessible. In addition, such laser systems provide for a flexible tool for investigating fundamental physics. Primary goals consist in verifying so far unobserved QED phenomena. Moreover, strong-field experiments can search for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on photon experiments in strong electromagnetic fields. The interaction of particle-physics candidates with photons and external fields can be parameterized by low-energy effective actions and typically predict characteristic optical signatures. I perform first estimates of the accessible new-physics parameter space of high-intensity laser facilities such as POLARIS and ELI.Comment: 7 pages, Key Lecture at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields", 9 September - 2 October 2008 at Frauenworth Monastery, German

    The zero-dimensional O(N) vector model as a benchmark for perturbation theory, the large-N expansion and the functional renormalization group

    Full text link
    We consider the zero-dimensional O(N) vector model as a simple example to calculate n-point correlation functions using perturbation theory, the large-N expansion, and the functional renormalization group (FRG). Comparing our findings with exact results, we show that perturbation theory breaks down for moderate interactions for all N, as one should expect. While the interaction-induced shift of the free energy and the self-energy are well described by the large-N expansion even for small N, this is not the case for higher-order correlation functions. However, using the FRG in its one-particle irreducible formalism, we see that very few running couplings suffice to get accurate results for arbitrary N in the strong coupling regime, outperforming the large-N expansion for small N. We further remark on how the derivative expansion, a well-known approximation strategy for the FRG, reduces to an exact method for the zero-dimensional O(N) vector model.Comment: 13 pages, 13 figure

    Coherence properties of the two-dimensional Bose-Einstein condensate

    Full text link
    We present a detailed finite-temperature Hartree-Fock-Bogoliubov (HFB) treatment of the two-dimensional trapped Bose gas. We highlight the numerical methods required to obtain solutions to the HFB equations within the Popov approximation, the derivation of which we outline. This method has previously been applied successfully to the three-dimensional case and we focus on the unique features of the system which are due to its reduced dimensionality. These can be found in the spectrum of low-lying excitations and in the coherence properties. We calculate the Bragg response and the coherence length within the condensate in analogy with experiments performed in the quasi-one-dimensional regime [Richard et al., Phys. Rev. Lett. 91, 010405 (2003)] and compare to results calculated for the one-dimensional case. We then make predictions for the experimental observation of the quasicondensate phase via Bragg spectroscopy in the quasi-two-dimensional regime.Comment: 9 pages, 9 figure
    corecore