51 research outputs found

    Dynamic orifice area variations in functional mitral regurgitation: In vivoreproduction and mechanistic insights

    Get PDF
    Aims: The spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7) are clinically characterized by progressive and severe ataxic symptoms, dysarthria, dysphagia, oculomotor impairments, pyramidal and extrapyramidal manifestations and sensory deficits. Although recent clinical studies reported additional disease signs suggesting involvement of the brainstem auditory system, this has never been studied in detail in SCA2, SCA3 or SCA7. Methods: We performed a detailed pathoanatomical investigation of unconventionally thick tissue sections through the auditory brainstem nuclei (that is, nucleus of the inferior colliculus, nuclei of the lateral lemniscus, superior olive, cochlear nuclei) and auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body, dorsal acoustic stria, cochlear portion of the vestibulocochlear nerve) of clinically diagnosed and genetically confirmed SCA2, SCA3 and SCA7 patients. Results: Examination of unconventionally thick serial brainstem sections stained for lipofuscin pigment and Nissl material revealed a consistent and widespread involvement of the auditory brainstem nuclei in the SCA2, SCA3 and SCA7 patients studied. Serial brainstem tissue sections stained for myelin showed loss of myelinated fibres in two of the auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body) in a subset of patients. Conclusions: The involvement of the auditory brainstem system offers plausible explanations for the auditory impairments detected in some of our and other SCA2, SCA3 and SCA7 patients upon bedside examination or neurophysiological investigation. However, further clinical studies are required to resolve the striking discrepancy between the consistent involvement of the brainstem auditory system observed in this study and the comparatively low frequency of reported auditory impairments in SCA2, SCA3 and SCA7 patients

    Biological evaluation of a novel nitroimidazooxazole derivative, IIIM-MCD-019 against Mycobacterium tuberculosis and its in vivo efficacy

    Get PDF
    Dysphagia, which can lead to nutritional deficiencies, weight loss and dehydration, represents a risk factor for aspiration pneumonia. Although clinical studies have reported the occurrence of dysphagia in patients with spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3), type 6 (SCA6) and type 7 (SCA7), there are neither detailed clinical records concerning the kind of ingestive malfunctions which contribute to dysphagia nor systematic pathoanatomical studies of brainstem regions involved in the ingestive process. In the present study we performed a systematic post mortem study on thick serial tissue sections through the ingestion-related brainstem nuclei of 12 dysphagic patients who suffered from clinically diagnosed and genetically confirmed spinocerebellar ataxias assigned to the CAG-repeat or polyglutamine diseases (two SCA2, seven SCA3, one SCA6 and two SCA7 patients) and evaluated their medical records. Upon pathoanatomical examination in all of the SCA2, SCA3, SCA6 and SCA7 patients, a widespread neurodegeneration of the brainstem nuclei involved in the ingestive process was found. The clinical records revealed that all of the SCA patients were diagnosed with progressive dysphagia and showed dysfunctions detrimental to the preparatory phase of the ingestive process, as well as the lingual, pharyngeal and oesophageal phases of swallowing. The vast majority of the SCA patients suffered from aspiration pneumonia, which was the most frequent cause of death in our sample. The findings of the present study suggest (i) that dysphagia in SCA2, SCA3, SCA6 and SCA7 patients may be associated with widespread neurodegeneration of ingestion-related brainstem nuclei; (ii) that dysphagic SCA2, SCA3, SCA6 and SCA7 patients may suffer from dysfunctions detrimental to all phases of the ingestive process; and (iii) that rehabilitative swallow therapy which takes specific functional consequences of the underlying brainstem lesions into account might be helpful in preventing aspiration pneumonia, weight loss and dehydration in SCA2, SCA3, SCA6 and SCA7 patients

    Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging.</p> <p>Method and Materials</p> <p>We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion.</p> <p>Results</p> <p>According to optical measurements, the size of intra-fraction motion was (<it>median ± quartile</it>) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly.</p> <p>Conclusion</p> <p>Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.</p

    The carboxy-terminal fragment of α1A calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells

    Get PDF
    Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease caused by a small polyglutamine (polyQ) expansion (control: 4–20Q; SCA6: 20–33Q) in the carboxyl(C)-terminal cytoplasmic domain of the α1A voltage-dependent calcium channel (Cav2.1). Although a 75–85-kDa Cav2.1 C-terminal fragment (CTF) is toxic in cultured cells, its existence in human brains and its role in SCA6 pathogenesis remains unknown. Here, we investigated whether the small polyQ expansion alters the expression pattern and intracellular distribution of Cav2.1 in human SCA6 brains. New antibodies against the Cav2.1 C-terminus were used in immunoblotting and immunohistochemistry. In the cerebella of six control individuals, the CTF was detected in sucrose- and SDS-soluble cytosolic fractions; in the cerebella of two SCA6 patients, it was additionally detected in SDS-insoluble cytosolic and sucrose-soluble nuclear fractions. In contrast, however, the CTF was not detected either in the nuclear fraction or in the SDS-insoluble cytosolic fraction of SCA6 extracerebellar tissues, indicating that the CTF being insoluble in the cytoplasm or mislocalized to the nucleus only in the SCA6 cerebellum. Immunohistochemistry revealed abundant aggregates in cell bodies and dendrites of SCA6 Purkinje cells (seven patients) but not in controls (n = 6). Recombinant CTF with a small polyQ expansion (rCTF-Q28) aggregated in cultured PC12 cells, but neither rCTF-Q13 (normal-length polyQ) nor full-length Cav2.1 with Q28 did. We conclude that SCA6 pathogenesis may be associated with the CTF, normally found in the cytoplasm, being aggregated in the cytoplasm and additionally distributed in the nucleus

    The importance of surgery as part of multimodal therapy in rapid progressive primary extraosseous Ewing sarcoma of the cervical intra- and epidural space

    No full text
    Primary extraosseous Ewing sarcomas (EESs) are an extremely rare pathological entity. Less than 32 cases have been reported in the literature. Here we report an uncommon case with very rapid progression in the cervical region with extra- and intradural involvement. We present a thorough review of the literature and discuss possible treatment modalities. The Medline database was searched using the search terms: Ewing sarcoma, extraosseus tumour, treatment, management, cervical spine. A previously healthy 29-year-old man complained of right-sided radiculopathy (C7). Magnetic resonance imaging showed an enhancing foraminal, sandglass shaped neurinoma- like lesion. Surgery revealed an intraand extra-dural lesion, which was histologically diagnosed as Ewing sarcoma. Despite gross total resection, there was a massive symptomatic tumor recurrence within 6 weeks. A second gross total resection was realized. The patient was treated according to the EURO E.W.I.N.G.-Protocol (VIDE) and recovered very well (progression-free interval during therapy). Several decompressive re-surgeries were realized with adjuvant radio-chemotherapy. At the last follow-up (17 months after initial surgery) the patient was in remission with a good quality of live. This case is to illustrate that despite extensive therapeutic efforts, the progression- free survival in case of primary EES may be very short. To maintain neurological function and good quality of live as long as possible, a multimodal strategy seems to be adequate. Like in the present case this implies several surgeries and adjuvant chemo-and radiotherapy. Whether this improves overall survival remains unclear

    The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease)

    No full text
    The nucleus raphe interpositus (RIP) plays an important role in the premotor network for saccades. Its omnipause neurons gate the activity of the burst neurons for vertical saccades lying within the rostral interstitial nucleus of the medial longitudinal fascicle and that for horizontal saccades residing in the caudal subnucleus of the pontine reticular formation. In the present study we investigated the RIP in five patients with clinically diagnosed and genetically confirmed spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease. Polyethylene glycol-embedded 100 mum serial sections stained for lipofuscin pigment and Nissl material as well as paraffin-embedded Nissl stained thin sections revealed the hitherto overlooked involvement of this pontine nucleus in the degenerative process underlying SCA3, whereby in four of our SCA3 patients the RIP underwent a conspicuous loss of presumed omnipause neurons. As observed in other affected brain structures, the RIP of all our SCA3 patients displayed reactive astrocytes and activated microglial cells, while some of the few of its surviving neurons harbored an ataxin-3-immunopositive intranuclear inclusion body. The findings of the present pathoanatomical study suggest that (1) neurodegeneration in the brain stem of terminal SCA3 patients is more widespread than previously thought and is not confined to cranial nerve nuclei involved in the generation of saccades but likewise involves the premotor network for saccades and (2) damage to the RIP may contribute to slowing of horizontal saccades in SCA3 patients but is not associated with saccadic oscillations as occasionally speculated. (C) 2002 Elsevier Science B.V. All rights reserved
    corecore