433 research outputs found

    On the Form of the Spitzer Leavitt Law and its Dependence on Metallicity

    Get PDF
    The form and metallicity-dependence of Spitzer mid-infrared Cepheid relations are a source of debate. Consequently, Spitzer 3.6 and 4.5 um period-magnitude and period-color diagrams were re-examined via robust routines, thus providing the reader an alternative interpretation to consider. The relations (nearly mean-magnitude) appear non-linear over an extensive baseline (0.45< logPo <2.0), particularly the period-color trend, which to first-order follows constant (3.6-4.5) color for shorter-period Cepheids and may transition into a bluer convex trough at longer-periods. The period-magnitude functions can be described by polynomials (e.g., [3.6 um]=Ko-(3.071+-0.059) logPo-(0.120+-0.032)logPo^2), and Cepheid distances computed using 3.6 and 4.5 um relations agree and the latter provides a first-order consistency check (CO sampled at 4.5 um does not seriously compromise those distances). The period-magnitude relations appear relatively insensitive to metallicity variations ([Fe/H]~0 to -0.75), a conclusion inferred partly from comparing galaxy distances established from those relations and NED-D (n>700), yet a solid conclusion awaits comprehensive mid-infrared observations for metal-poor Cepheids in IC 1613 ([Fe/H] -1). The Cepheid-based distances were corrected for dust obscuration using a new ratio (i.e., A(3.6)/E(B-V)=0.18+-0.06) deduced from GLIMPSE (Spitzer) data.Comment: To appear in Ap

    High resolution spectroscopy for Cepheids distance determination. V. Impact of the cross-correlation method on the p-factor and the gamma-velocities

    Full text link
    The cross correlation method (hereafter CC) is widely used to derive the radial velocity curve of Cepheids when the signal to noise of the spectra is low. However, if it is used with the wrong projection factor, it might introduce some biases in the Baade-Wesselink (hereafter BW) methods of determining the distance of Cepheids. In addition, it might affect the average value of the radial velocity curve (or gamma-velocity) important for Galactic structure studies. We aim to derive a period-projection factor relation (hereafter Pp) appropriate to be used together with the CC method. Moreover, we investigate whether the CC method can explain the misunderstood previous calculation of the K-term of Cepheids. We observed eight galactic Cepheids with the HARPS spectrograph. For each star, we derive an interpolated CC radial velocity curve using the HARPS pipeline. The amplitudes of these curves are used to determine the correction to be applied to the semi-theoretical projection factor derived in Nardetto et al. (2007). Their average value (or gamma-velocity) are also compared to the center-of-mass velocities derived in Nardetto et al. (2008). The correction in amplitudes allows us to derive a new Pp relation: p = [-0.08+-0.05] log P +[1.31+-0.06]. We also find a negligible wavelength dependence (over the optical range) of the Pp relation. We finally show that the gamma-velocity derived from the CC method is systematically blue-shifted by about 1.0 +- 0.2km/s compared to the center-of-mass velocity of the star. An additional blue-shift of 1.0km/s is thus needed to totally explain the previous calculation of the K-term of Cepheids (around 2km/s). The new Pp relation we derived is a solid tool for the distance scale calibration (abridged).Comment: Comments : 9 pages, 3 Postscript figures, 5 Tables, accepted for publication in A&

    The Araucaria Project: The effect of blending on the Cepheid distance to NGC 300 from Advanced Camera for Surveys images

    Full text link
    We have used the Advanced Camera for Surveys aboard the Hubble Space Telescope to obtain F435W, F555W and F814W single-epoch images of six fields in the spiral galaxy NGC 300. Taking advantage of the superb spatial resolution of these images, we have tested the effect that blending of the Cepheid variables studied from the ground with close stellar neighbors, unresolved on the ground-based images, has on the distance determination to NGC 300. Out of the 16 Cepheids included in this study, only three are significantly affected by nearby stellar objects. After correcting the ground-based magnitudes for the contribution by these projected companions to the observed flux, we find that the corresponding Period-Luminosity relations in V, I and the Wesenheit magnitude W_I are not significantly different from the relations obtained without corrections. We fix an upper limit of 0.04 magnitudes to the systematic effect of blending on the distance modulus to NGC 300. As part of our HST imaging program, we present improved photometry for 40 blue supergiants in NGC 300.Comment: To be published in the Astrophysical Journa

    On Be Star Candidates and Possible Blue Pre-Main Sequence Objects in the Small Magellanic Cloud

    Get PDF
    Recently the OGLE experiment has provided accurate light curves and colours for about 2 millions stars in the Small Magellanic Cloud. We have examined this database for its content of Be stars, applying some selection criteria, and we have found a sample of ∌\sim 1000 candidates. Some of these stars show beautiful light curves with amazing variations never observed in any Galactic variable. We find outbursts in 13% of the sample (Type-1 stars), high and low states in 15%, periodic variations in 7%, and the usual variations seen in Galactic Be stars in 65% of the cases. The Galactic counterparts of Type-1 objects could be the outbursting Be stars found by Hubert & Floquet (1998) after the analysis of Hipparcos photometry. We discuss the possibility that Type-1 stars could correspond to Be stars with accreting white dwarf companions or alternatively, blue pre-main sequence stars surrounded by thermally unstable accretion disks. We provide coordinates and basic photometric information for these stars and some examples of light curves.Comment: 9 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    The ARAUCARIA project. Discovery of Cepheid Variables in NGC 300 from a Wide-Field Imaging Survey

    Get PDF
    Based on observations of NGC 300, obtained with the Wide-Field Camera at the 2.2 m ESO/MPI telescope during 29 nights spread over a 5.3 month interval, 117 Cepheids and 12 Cepheid candidates were found which cover the period range from 115 to 5.4 days. We present a catalog which provides equatorial coordinates, period, time of maximum brightness, and intensity mean B and V magnitudes for each variable, and we show phased B and V light curves for all the Cepheids found. We also present the individual B and V observations for each Cepheid in our catalog. We find very good agreement between our photometry and that obtained by Freedman et al. from ground-based CCD data for common stars. The Cepheids delineate the spiral arms of NGC 300, and a couple of them were detected very close to the center of the galaxy. From the color-magnitude diagram of NGC 300 constructed from our data, we expect that our Cepheid detection is near-complete for variables with periods larger than about 10 days. We present plots of the PL relations in the B and V bands obtained from our data, which clearly demonstrate the presence of a Malmquist bias for periods below about 10 days. A thorough discussion of the distance to NGC 300 will be presented in a forthcoming paper which will include the analysis of photometry in longer-wavelength bands.Comment: 26 pages, Latex. Astronomical Journal in pres

    The Araucaria Project. Near-Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC 55

    Full text link
    We have obtained deep images in the near-infrared J and K filters of four fields in the Sculptor Group spiral galaxy NGC 55 with the ESO VLT and ISAAC camera. For 40 long-period Cepheid variables in these fields which were recently discovered by Pietrzy{\'n}ski et al., we have determined mean J and K magnitudes from observations at two epochs, and derived distance moduli from the observed PL relations in these bands. Using these values together with the previously measured distance moduli in the optical V and I bands, we have determined a total mean reddening of the NGC 55 Cepheids of E(B-V)=0.127 ±\pm 0.019 mag, which is mostly produced inside NGC 55 itself. For the true distance modulus of the galaxy, our multiwavelength analysis yields a value of 26.434 ±\pm 0.037 mag (random error), corresponding to a distance of 1.94 ±\pm 0.03 Mpc. This value is tied to an adopted true LMC distance modulus of 18.50 mag. The systematic uncertainty of our derived Cepheid distance to NGC 55 (apart from the uncertainty on the adopted LMC distance) is ±\pm4%, with the main contribution likely to come from the effect of blending of some of the Cepheids with unresolved companion stars. The distance of NGC 55 derived from our multiwavelength Cepheid analysis agrees within the errors with the distance of NGC 300, strengthening the case for a physical association of these two Sculptor Group galaxies.Comment: latex. ApJ accepte
    • 

    corecore