18 research outputs found

    Cholera Transmission in Bangladesh: Social Networks and Neighborhoods

    Get PDF
    Transmission of infectious pathogens across networks is well-documented, yet remains primarily focused on diseases spread by sexual contact. Such analytical tools, however, may also facilitate understanding of how other types of health outcomes are related to physical and social contacts. This research examines the relationship between cholera incidence and the social network that links households in rural Bangladesh. Using twenty-one years of longitudinal demographic and health data, clustering of similar disease rates in the network was measured and compared to spatial autocorrelation of cholera at the neighborhood level. Results indicate that rates are significantly concentrated amongst households within the same local environment, and that social clustering is only evident during certain years examined. These outcomes suggest that intervention efforts should place priority on identifying local-level environmental factors, but also consider the potential of networks as they assist transmission, as well as their role in interactions within a defined neighborhood

    The Simultaneous Effects of Spatial and Social Networks on Cholera Transmission

    Get PDF
    This study uses social network and spatial analytical methods simultaneously to understand cholera transmission in rural Bangladesh. Both have been used separately to incorporate context into health studies, but using them together is a new and recent approach. Data include a spatially referenced longitudinal demographic database consisting of approximately 200,000 people and a database of all laboratory-confirmed cholera cases from 1983 to 2003. A complete kinship-based network linking households is created, and distance matrices are also constructed to model spatial relationships. A spatial error-social effects model tested for cholera clustering in socially linked households while accounting for spatial factors. Results show that there was social clustering in five out of twenty-one years while accounting for both known and unknown environmental variables. This suggests that environmental cholera transmission is significant and social networks also influence transmission, but not as consistently. Simultaneous spatial and social network analysis may improve understanding of disease transmission

    A comparison of spatial and social clustering of cholera in Matlab, Bangladesh

    Get PDF
    Infectious diseases often cluster spatially, but can also cluster socially because they are transmitted within social networks. This study compares spatial and social clustering of cholera in rural Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. The results show that cholera always clusters in space and seldom within social networks. Cholera is transmitted mostly through the local environment rather than through person-to-person contact. Comparing spatial and social network analysis can help improve understanding of disease transmission

    Diarrheal disease risk in rural Bangladesh decreases as tubewell density increases: a zero-inflated and geographically weighted analysis

    Get PDF
    Abstract Background This study investigates the impact of tubewell user density on cholera and shigellosis events in Matlab, Bangladesh between 2002 and 2004. Household-level demographic, health, and water infrastructure data were incorporated into a local geographic information systems (GIS) database. Geographically-weighted regression (GWR) models were constructed to identify spatial variation of relationships across the study area. Zero-inflated negative binomial regression models were run to simultaneously measure the likelihood of increased magnitude of disease events and the likelihood of zero cholera or shigellosis events. The aim of this study was to examine the effect of tubewell density on both the occurrence of diarrheal disease and the magnitude of diarrheal disease incidence. Results In Matlab, households with greater tubewell density were more likely to report zero cholera or shigellosis events. Results for both cholera and shigellosis GWR models suggest that tubewell density effects are spatially stationary and the use of non-spatial statistical methods is appropriate. Conclusions Increasing the amount of drinking water available to households through increased density of tubewells contributed to lower reports of cholera and shigellosis events in rural Bangladesh. Our findings demonstrate the importance of tubewell installation and access to groundwater in reducing diarrheal disease events in the developing world

    Integration of Spatial and Social Network Analysis in Disease Transmission Studies

    Get PDF
    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how

    Social and spatial processes associated with childhood diarrheal disease in Matlab, Bangladesh

    Get PDF
    We develop novel methods for conceptualizing geographic space and social networks to evaluate their respective and combined contributions to childhood diarrheal incidence. After defining maternal networks according to direct familial linkages between females, and road networks using satellite imagery of the study area, we use a spatial econometrics model to evaluate the significance of correlation terms relating childhood diarrheal incidence to the incidence observed within respective networks. Disease was significantly clustered within road networks across time, but only inconsistently correlated within maternal networks. These methods could be widely applied to systems in which both social and spatial processes jointly influence health outcomes

    The Role of Vaccine Coverage within Social Networks in Cholera Vaccine Efficacy

    Get PDF
    Traditional vaccine trial methods have an underlying assumption that the effect of a vaccine is the same throughout the trial area. There are, however, many spatial and behavioral factors that alter the rates of contact among infectious and susceptible individuals and result in different efficacies across a population. We reanalyzed data from a field trial in Bangladesh to ascertain whether there is evidence of indirect protection from cholera vaccines when vaccination rates are high in an individual's social network.We analyzed the first year of surveillance data from a placebo-controlled trial of B subunit-killed whole-cell and killed whole-cell-only oral cholera vaccines in children and adult women in Bangladesh. We calculated whether there was an inverse trend for the relation between the level of vaccine coverage in an individual's social network and the incidence of cholera in individual vaccine recipients or placebo recipients after controlling for potential confounding variables.Using bari-level social network ties, we found incidence rates of cholera among placebo recipients were inversely related to levels of vaccine coverage (5.28 cases per 1000 in the lowest quintile vs 3.27 cases per 1000 in the highest quintile; p = 0.037 for trend). Receipt of vaccine by an individual and the level of vaccine coverage of the individual's social network were independently related to a reduced risk of cholera.Findings indicate that progressively higher levels of vaccine coverage in bari-level social networks can lead to increasing levels of indirect protection of non-vaccinated individuals and could also lead to progressively higher levels of total protection of vaccine recipients

    The Simultaneous Effects of Spatial and Social Networks on Cholera Transmission

    No full text
    This study uses social network and spatial analytical methods simultaneously to understand cholera transmission in rural Bangladesh. Both have been used separately to incorporate context into health studies, but using them together is a new and recent approach. Data include a spatially referenced longitudinal demographic database consisting of approximately 200,000 people and a database of all laboratory-confirmed cholera cases from 1983 to 2003. A complete kinship-based network linking households is created, and distance matrices are also constructed to model spatial relationships. A spatial error-social effects model tested for cholera clustering in socially linked households while accounting for spatial factors. Results show that there was social clustering in five out of twenty-one years while accounting for both known and unknown environmental variables. This suggests that environmental cholera transmission is significant and social networks also influence transmission, but not as consistently. Simultaneous spatial and social network analysis may improve understanding of disease transmission

    Predictors of cholera risk in recipients of vaccine or placebo, <i>bari</i>-level social networks.

    No full text
    <p>*Multivariate odds ratio for the cited variable, adjusted for all other variables in the table.</p><p>†Variable was not considered in models 2 and 3 since all individuals were either vaccinated or not in these models.</p
    corecore