8 research outputs found

    Influence of augmentation on the performance of the double ResNet-based model for chest X-ray classification

    Get PDF
    Purpose: A pandemic disease elicited by the SARS-CoV-2 virus has become a serious health issue due to infecting millions of people all over the world. Recent publications prove that artificial intelligence (AI) can be used for medical diagnosis purposes, including interpretation of X-ray images. X-ray scanning is relatively cheap, and scan processing is not computationally demanding. Material and methods: In our experiment a baseline transfer learning schema of processing of lung X-ray images, including augmentation, in order to detect COVID-19 symptoms was implemented. Seven different scenarios of augmentation were proposed. The model was trained on a dataset consisting of more than 30,000 X-ray images. Results: The obtained model was evaluated using real images from a Polish hospital, with the use of standard metrics, and it achieved accuracy = 0.9839, precision = 0.9697, recall = 1.0000, and F1-score = 0.9846. Conclusions: Our experiment proved that augmentations and masking could be important steps of data pre-processing and could contribute to improvement of the evaluation metrics. Because medical professionals often tend to lack confidence in AI-based tools, we have designed the proposed model so that its results would be explainable and could play a supporting role for radiology specialists in their work

    A Machine-Learning-Based Approach to Prediction of Biogeographic Ancestry within Europe

    Get PDF
    Data obtained with the use of massive parallel sequencing (MPS) can be valuable in population genetics studies. In particular, such data harbor the potential for distinguishing samples from different populations, especially from those coming from adjacent populations of common origin. Machine learning (ML) techniques seem to be especially well suited for analyzing large datasets obtained using MPS. The Slavic populations constitute about a third of the population of Europe and inhabit a large area of the continent, while being relatively closely related in population genetics terms. In this proof-of-concept study, various ML techniques were used to classify DNA samples from Slavic and non-Slavic individuals. The primary objective of this study was to empirically evaluate the feasibility of discerning the genetic provenance of individuals of Slavic descent who exhibit genetic similarity, with the overarching goal of categorizing DNA specimens derived from diverse Slavic population representatives. Raw sequencing data were pre-processed, to obtain a 1200 character-long binary vector. A total of three classifiers were used—Random Forest, Support Vector Machine (SVM), and XGBoost. The most-promising results were obtained using SVM with a linear kernel, with 99.9% accuracy and F1-scores of 0.9846–1.000 for all classes

    Porównanie metod śledzenia obiektów

    No full text
    Object tracking has been improved recently and now it seems to be one of the most challenging task in a computer vision area. In this article there are presented five top state-of-art algorithms. There were tested and the comparison of their results was performed and presented in plots and tables. A precision and an accuracy were evaluated, while some intruding factors, like rotations or blurring, were observed.Śledzenie obiektów jest coraz bardziej popularne i może być uznane za jedno z najbardziej wymagających zadań w obszarze wizji komputerowej. W pracy zaprezentowano pięć najbardziej wydajnych i najlepiej znanych algorytmów. Zostały one zaimplementowane, przetestowane i porównane. Wyniki tego porównania przedstawiono za pomocą wykresów oraz tabel. Podczas testów oceniane były precyzja i dokładność śledzenia. Obserwowano również wpływ czynników zakłócających na jakość śledzenia

    Who Will Score? A Machine Learning Approach to Supporting Football Team Building and Transfers

    No full text
    Background: the machine learning (ML) techniques have been implemented in numerous applications, including health-care, security, entertainment, and sports. In this article, we present how the ML can be used for building a professional football team and planning player transfers. Methods: in this research, we defined numerous parameters for player assessment, and three definitions of a successful transfer. We used the Random Forest, Naive Bayes, and AdaBoost algorithms in order to predict the player transfer success. We used realistic, publicly available data in order to train and test the classifiers. Results: in the article, we present numerous experiments; they differ in the weights of parameters, the successful transfer definitions, and other factors. We report promising results (accuracy = 0.82, precision = 0.84, recall = 0.82, and F1-score = 0.83). Conclusion: the presented research proves that machine learning can be helpful in professional football team building. The proposed algorithm will be developed in the future and it may be implemented as a professional tool for football talent scouts

    Who Will Score? A Machine Learning Approach to Supporting Football Team Building and Transfers

    No full text
    Background: the machine learning (ML) techniques have been implemented in numerous applications, including health-care, security, entertainment, and sports. In this article, we present how the ML can be used for building a professional football team and planning player transfers. Methods: in this research, we defined numerous parameters for player assessment, and three definitions of a successful transfer. We used the Random Forest, Naive Bayes, and AdaBoost algorithms in order to predict the player transfer success. We used realistic, publicly available data in order to train and test the classifiers. Results: in the article, we present numerous experiments; they differ in the weights of parameters, the successful transfer definitions, and other factors. We report promising results (accuracy = 0.82, precision = 0.84, recall = 0.82, and F1-score = 0.83). Conclusion: the presented research proves that machine learning can be helpful in professional football team building. The proposed algorithm will be developed in the future and it may be implemented as a professional tool for football talent scouts

    Lightweight Verification Schema for Image-Based Palmprint Biometric Systems

    No full text
    Palmprint biometrics is a promising modality that enables efficient human identification, also in a mobile scenario. In this paper, a novel approach to feature extraction for palmprint verification is presented. The features are extracted from hand geometry and palmprint texture and fused. The use of a fusion of features facilitates obtaining a higher accuracy and, at the same time, provides more robustness to intrusive factors like illumination, variation, or noise. The major contribution of this paper is the proposition and evaluation of a lightweight verification schema for biometric systems that improves the accuracy without increasing computational complexity which is a necessary requirement in real-life scenarios

    Advances in Computer Recognition, Image Processing and Communications

    No full text
    This Special Issue aimed to gather high-quality advancements in theoretical and practical aspects of computer recognition, pattern recognition, image processing and machine learning (shallow and deep), including, in particular, novel implementations of these techniques in the areas of modern telecommunications and cybersecurity [...

    A Novel Lightweight Approach to COVID-19 Diagnostics Based on Chest X-ray Images

    No full text
    Background: This paper presents a novel lightweight approach based on machine learning methods supporting COVID-19 diagnostics based on X-ray images. The presented schema offers effective and quick diagnosis of COVID-19. Methods: Real data (X-ray images) from hospital patients were used in this study. All labels, namely those that were COVID-19 positive and negative, were confirmed by a PCR test. Feature extraction was performed using a convolutional neural network, and the subsequent classification of samples used Random Forest, XGBoost, LightGBM and CatBoost. Results: The LightGBM model was the most effective in classifying patients on the basis of features extracted from X-ray images, with an accuracy of 1.00, a precision of 1.00, a recall of 1.00 and an F1-score of 1.00. Conclusion: The proposed schema can potentially be used as a support for radiologists to improve the diagnostic process. The presented approach is efficient and fast. Moreover, it is not excessively complex computationally
    corecore