109 research outputs found

    Small Black Holes on Branes: Is the horizon regular or singular ?

    Full text link
    We investigate the following question: Consider a small mass, with ϵ\epsilon (the ratio of the Schwarzschild radius and the bulk curvature length) much smaller than 1, that is confined to the TeV brane in the Randall-Sundrum I scenario. Does it form a black hole with a regular horizon, or a naked singularity? The metric is expanded in ϵ\epsilon and the asymptotic form of the metric is given by the weak field approximation (linear in the mass). In first order of ϵ\epsilon we show that the iteration of the weak field solution, which includes only integer powers of the mass, leads to a solution that has a singular horizon. We find a solution with a regular horizon but its asymptotic expansion in the mass also contains half integer powers.Comment: Accepted for publication in PR

    Magnetic Wormholes and Vertex Operators

    Full text link
    We consider wormhole solutions in 2+12+1 Euclidean dimensions. A duality transformation is introduced to derive a new action from magnetic wormhole action of Gupta, Hughes, Preskill and Wise. The classical solution is presented. The vertex operators corresponding to the wormhole are derived. Conformally coupled scalars and spinors are considered in the wormhole background and the vertex operators are computed. ( To be published in Phys. Rev. D15)Comment: 18 pages of RevTex, preprint IP/BBSR/94-2

    Renormalization group improved black hole space-time in large extra dimensions

    Full text link
    By taking into account a running of the gravitational coupling constant with an ultra violet fixed point, an improvement of classical black hole space-times in extra dimensions is studied. It is found that the thermodynamic properties in this framework allow for an effective description of the black hole evaporation process. Phenomenological consequences of this approach are discussed and the LHC discovery potential is estimated.Comment: 13 pages, 6 figure

    Discovering New Physics in the Decays of Black Holes

    Get PDF
    If the scale of quantum gravity is near a TeV, the LHC will be producing one black hole (BH) about every second, thus qualifying as a BH factory. With the Hawking temperature of a few hundred GeV, these rapidly evaporating BHs may produce new, undiscovered particles with masses ~100 GeV. The probability of producing a heavy particle in the decay depends on its mass only weakly, in contrast with the exponentially suppressed direct production. Furthemore, BH decays with at least one prompt charged lepton or photon correspond to the final states with low background. Using the Higgs boson as an example, we show that it may be found at the LHC on the first day of its operation, even with incomplete detectors.Comment: 4 pages, 3 figure

    A Conformal Field Theory of a Rotating Dyon

    Get PDF
    A conformal field theory representing a four-dimensional classical solution of heterotic string theory is presented. The low-energy limit of this solution has U(1) electric and magnetic charges, and also nontrivial axion and dilaton fields. The low-energy metric contains mass, NUT and rotation parameters. We demonstrate that this solution corresponds to part of an extremal limit of the Kerr-Taub-NUT dyon solution. This limit displays interesting `remnant' behaviour, in that asymptotically far away from the dyon the angular momentum vanishes, but far down the infinite throat in the neighbourhood of the horizon (described by our CFT) there is a non-zero angular velocity. A further natural generalization of the CFT to include an additional parameter is presented, but the full physical interpretation of its role in the resulting low energy solution is unclear.Comment: 43 pages, Plain TEX + epsf.tex for one uuencoded figure

    Uniqueness Theorem for Static Black Hole Solutions of sigma-models in Higher Dimensions

    Full text link
    We prove the uniqueness theorem for self-gravitating non-linear sigma-models in higher dimensional spacetime. Applying the positive mass theorem we show that Schwarzschild-Tagherlini spacetime is the only maximally extended, static asymptotically flat solution with non-rotating regular event horizon with a constant mapping.Comment: 5 peges, Revtex, to be published in Class.Quantum Gra

    High Energy Colliders as Black Hole Factories: The End of Short Distance Physics

    Get PDF
    If the fundamental Planck scale is of order a TeV, as the case in some extra-dimensions scenarios, future hadron colliders such as the Large Hadron Collider will be black hole factories. The non-perturbative process of black hole formation and decay by Hawking evaporation gives rise to spectacular events with up to many dozens of relatively hard jets and leptons, with a characteristic ratio of hadronic to leptonic activity of roughly 5:1. The total transverse energy of such events is typically a sizeable fraction of the beam energy. Perturbative hard scattering processes at energies well above the Planck scale are cloaked behind a horizon, thus limiting the ability to probe short distances. The high energy black hole cross section grows with energy at a rate determined by the dimensionality and geometry of the extra dimensions. This dependence therefore probes the extra dimensions at distances larger than the Planck scale.Comment: Latex, 28 pages. v4: minor changes, largely to agree with published version; appendix added comparing convention

    An Anisotropic Wormhole:TUNNELLING in Time and Space

    Full text link
    We discuss the structure of a gravitational euclidean instanton obtained through coupling of gravity to electromagnetism. Its topology at fixed tt is S1×S2S^1\times S^2. This euclidean solution can be interpreted as a tunnelling to a hyperbolic space (baby universe) at t=0t=0 or alternatively as a static wormhole that joins the two asymptotically flat spaces of a Reissner--Nordstr\"om type solution with M=0M=0.Comment: PLAIN-TEX, 16 pages (4 figures not included), Report DFTT 2/9

    Charged black holes in effective string theory

    Get PDF
    We investigate the qualitative new features of charged dilatonic black holes which emerge when both the Yang-Mills and Gauss-Bonnet curvature corrections are included in the effective action. We consider perturbative effects by an expansion up to second order in the inverse string tension on the four dimensional Schwarzschild background and determine the backreaction. We calculate the thermodynamical functions and show that for magnetic charge above a critical value, the temperature of the black hole has a maximum and goes to zero for a finite value of the mass. This indicates that the conventional Hawking evaporation law is modified by string theory at a classical level.Comment: 17 pages, 5 figures not included, plain Te
    corecore