51 research outputs found

    A global picture of quantum de Sitter space

    Full text link
    Perturbative gravity about a de Sitter background motivates a global picture of quantum dynamics in `eternal de Sitter space,' the theory of states which are asymptotically de Sitter to both future and past. Eternal de Sitter physics is described by a finite dimensional Hilbert space in which each state is precisely invariant under the full de Sitter group. This resolves a previously-noted tension between de Sitter symmetry and finite entropy. Observables, implications for Boltzmann brains, and Poincare recurrences are briefly discussed.Comment: 17 pages, 1 figure. v2: minor changes, references added. v3: minor changes to correspond to PRD versio

    Is string theory a theory of quantum gravity?

    Full text link
    Some problems in finding a complete quantum theory incorporating gravity are discussed. One is that of giving a consistent unitary description of high-energy scattering. Another is that of giving a consistent quantum description of cosmology, with appropriate observables. While string theory addresses some problems of quantum gravity, its ability to resolve these remains unclear. Answers may require new mechanisms and constructs, whether within string theory, or in another framework.Comment: Invited contribution for "Forty Years of String Theory: Reflecting on the Foundations," a special issue of Found. Phys., ed. by G 't Hooft, E. Verlinde, D. Dieks, S. de Haro. 32 pages, 5 figs., harvmac. v2: final version to appear in journal (small revisions

    Spacetime Embedding Diagrams for Black Holes

    Get PDF
    We show that the 1+1 dimensional reduction (i.e., the radial plane) of the Kruskal black hole can be embedded in 2+1 Minkowski spacetime and discuss how features of this spacetime can be seen from the embedding diagram. The purpose of this work is educational: The associated embedding diagrams may be useful for explaining aspects of black holes to students who are familiar with special relativity, but not general relativity.Comment: 22 pages, 21 figures, RevTex. To be submitted to the American Journal of Physics. Experts will wish only to skim appendix A and to look at the pictures. Suggested Maple code is now compatible with MapleV4r

    Comments on Microcausality, Chaos, and Gravitational Observables

    Full text link
    Observables in gravitational systems must be non-local so as to be invariant under diffeomorphism gauge transformations. But at the classical level some such observables can nevertheless satisfy an exact form of microcausality. This property is conjectured to remain true at all orders in the semiclassical expansion, though with limitations at finite \hbar or Planck\ell_{Planck}. We also discuss related issues concerning observables in black hole spacetimes and comment on the senses in which they do and do not experience the form of chaos identified by Shenker and Stanford. In particular, in contrast to the situation in a reflecting cavity, this chaos does not afflict observables naturally associated with Hawking radiation for evaporating black holes.Comment: 16 pages, 1 figure; references adde

    Soft branes in supersymmetry-breaking backgrounds

    Full text link
    We revisit the analysis of effective field theories resulting from non-supersymmetric perturbations to supersymmetric flux compactifications of the type-IIB superstring with an eye towards those resulting from the backreaction of a small number of anti-D3-branes. Independently of the background, we show that the low-energy Lagrangian describing the fluctuations of a stack of probe D3-branes exhibits soft supersymmetry breaking, despite perturbations to marginal operators that were not fully considered in some previous treatments. We take this as an indication that the breaking of supersymmetry by anti-D3-branes or other sources may be spontaneous rather than explicit. In support of this, we consider the action of an anti-D3-brane probing an otherwise supersymmetric configuration and identify a candidate for the corresponding goldstino.Comment: 36+5 pages. References added, minor typos correcte

    One-loop corrections to the curvature perturbation from inflation

    Full text link
    An estimate of the one-loop correction to the power spectrum of the primordial curvature perturbation is given, assuming it is generated during a phase of single-field, slow-roll inflation. The loop correction splits into two parts, which can be calculated separately: a purely quantum-mechanical contribution which is generated from the interference among quantized field modes around the time when they cross the horizon, and a classical contribution which comes from integrating the effect of field modes which have already passed far beyond the horizon. The loop correction contains logarithms which may invalidate the use of naive perturbation theory for cosmic microwave background (CMB) predictions when the scale associated with the CMB is exponentially different from the scale at which the fundamental theory which governs inflation is formulated.Comment: 28 pages, uses feynmp.sty and ioplatex journal style. v2: supersedes version published in JCAP. Some corrections and refinements to the discussion and conclusions. v3: Corrects misidentification of quantum correction with an IR effect. Improvements to the discussio

    de Sitter invariance of the dS graviton vacuum

    Full text link
    The two-point function of linearized gravitons on de Sitter space is infrared divergent in the standard transverse traceless synchronous gauge defined by k=0k=0 cosmological coordinates (also called conformal or Poincare coordinates). We show that this divergence can be removed by adding a linearized diffeomorphism to each mode function; i.e., by an explicit change of gauge. It follows that the graviton vacuum state is well-defined and de Sitter invariant in agreement with various earlier arguments.Comment: 14 pages, 1 figur

    IR divergences and kinetic equation in de Sitter space. (Poincare patch; Principal series)

    Full text link
    We explicitly show that the one loop IR correction to the two--point function in de Sitter space scalar QFT does not reduce just to the mass renormalization. The proper interpretation of the loop corrections is via particle creation revealing itself through the generation of the quantum averages ,, and ,whichslowlychangeintime.WeshowthatthisobservationinparticularmeansthatloopcorrectionstocorrelationfunctionsindeSitterspacecannotbeobtainedviaanalyticalcontinuationofthosecalculatedonthesphere.Wefindharmonicsforwhichtheparticlenumber, which slowly change in time. We show that this observation in particular means that loop corrections to correlation functions in de Sitter space can not be obtained via analytical continuation of those calculated on the sphere. We find harmonics for which the particle number dominates over the anomalous expectation values and and . For these harmonics the Dyson--Schwinger equation reduces in the IR limit to the kinetic equation. We solve the latter equation, which allows us to sum up all loop leading IR contributions to the Whiteman function. We perform the calculation for the principle series real scalar fields both in expanding and contracting Poincare patches.Comment: 33 pages, 6 fig; Language was correcte
    corecore