3 research outputs found

    Warifteine, an alkaloid of Cissampelos sympodialis, modulates allergic profile in a chronic allergic rhinitis model

    No full text
    Cissampelos sympodialis Eichler, Menispermaceae, a Brazilian medicinal plant and its alkaloid warifteine present immunomodulatory activity on asthma experimental model by reducing antigen-specific IgE levels, eosinophil infiltration and lung hyperactivity. Allergic rhinitis is a chronic inflammatory disorder of the nasal tissue that affect the quality of life and it is a risk factor for asthma exacerbation. This study evaluated the effect of inhaled warifteine in an allergic ovalbumin rhinitis model. Inhaled warifteine (2 mg/ml) treatment of ovalbumin-sensitized BALB/c mice significant decreased total and differential number of cells on the nasal cavity and decreased ovalbumin-specific IgE serum levels. Hematoxylin & eosin staining of histological preparations of ovalbumin nasal tissues showed changes such as congestion and a massive cell infiltration in the perivascular and subepithelial regions characterizing the nasal inflammatory process. However, inhaled warifteine or dexamethasone treatment decreased cell infiltration into the perivascular regions and it was observed an intact nasal tissue. Periodic acidic staining of nasal epithelium of ovalbumin animals demonstrated high amount of mucus production by goblet cells and inhaled warifteine or dexamethasone treatment modulated the mucus production. In addition, toluidine blue staining of the nasal epithelium of ovalbumin animals demonstrated an increase of mast cells on the tissue and inhaled warifteine or dexamethasone treatment decreased in average of 1.4 times the number of these cells on the nasal epithelium. Taken these data together we postulate that warifteine, an immunomodulatory alkaloid, can be a medicinal molecule prototype to ameliorate the allergic rhinitis conditions. Keywords: Allergic rhinitis, Eosinophil, IgE, Nasal tissues, Mast cells, Wariftein

    Virgin Coconut Oil Supplementation Prevents Airway Hyperreactivity of Guinea Pigs with Chronic Allergic Lung Inflammation by Antioxidant Mechanism

    No full text
    Asthma is a chronic inflammatory disease of the airways characterized by immune cell infiltrates, bronchial hyperresponsiveness, and declining lung function. Thus, the possible effects of virgin coconut oil on a chronic allergic lung inflammation model were evaluated. Morphology of lung and airway tissue exhibited peribronchial inflammatory infiltrate, epithelial hyperplasia, and smooth muscle thickening in guinea pigs submitted to ovalbumin sensitization, which were prevented by virgin coconut oil supplementation. Additionally, in animals with lung inflammation, trachea contracted in response to ovalbumin administration, showed a greater contractile response to carbachol (CCh) and histamine, and these responses were prevented by the virgin coconut oil supplementation. Apocynin, a NADPH oxidase inhibitor, did not reduce the potency of CCh, whereas tempol, a superoxide dismutase mimetic, reduced potency only in nonsensitized animals. Catalase reduced the CCh potency in nonsensitized animals and animals sensitized and treated with coconut oil, indicating the participation of superoxide anion and hydrogen peroxide in the hypercontractility, which was prevented by virgin coconut oil. In the presence of L-NAME, a nitric oxide synthase (NOS) inhibitor, the CCh curve remained unchanged in nonsensitized animals but had increased efficacy and potency in sensitized animals, indicating an inhibition of endothelial NOS but ineffective in inhibiting inducible NOS. In animals sensitized and treated with coconut oil, the CCh curve was not altered, indicating a reduction in the release of NO by inducible NOS. These data were confirmed by peribronchiolar expression analysis of iNOS. The antioxidant capacity was reduced in the lungs of animals with chronic allergic lung inflammation, which was reversed by the coconut oil, and confirmed by analysis of peribronchiolar 8-iso-PGF2α content. Therefore, the virgin coconut oil supplementation reverses peribronchial inflammatory infiltrate, epithelial hyperplasia, smooth muscle thickening, and hypercontractility through oxidative stress and its interactions with the NO pathway
    corecore