22,398 research outputs found

    Model Dependence of the 2H Electric Dipole Moment

    Full text link
    Background: Direct measurement of the electric dipole moment (EDM) of the neutron lies in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the 3P1 channel, the latter being sensitive to the off-shell behavior of the 3P1 amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the 2H EDM until such time as a better than 10% measurement is obtained.Comment: 21 pages, 2 figures, submitted to Physical Review

    X-ray diffraction to probe the kinetics of ice recrystallization inhibition

    Get PDF
    Understanding the nucleation and growth of ice is crucial in fields ranging from infrastructure maintenance, to the environment, and to preserving biologics in the cold chain. Ice binding and antifreeze proteins are potent ice recrystallization inhibitors (IRI), and synthetic materials that mimic this function have emerged, which may find use in biotechnology. To evaluate IRI activity, optical microscopy tools are typically used to monitor ice grain size either by end-point measurements or as a function of time. However, these methods provide 2-dimensional information and image analysis is required to extract the data. Here we explore using wide angle X-ray scattering (WAXS/X-ray powder diffraction (XRD)) to interrogate 100's of ice crystals in 3-dimensions as a function of time. Due to the random organization of the ice crystals in the frozen sample, the number of orientations measured by XRD is proportional to the number of ice crystals, which can be measured as a function of time. This method was used to evaluate the activity for a panel of known IRI active compounds, and shows strong agreement with results obtained from cryo-microscopy, as well as being advantageous in that time-dependent ice growth is easily extracted. Diffraction analysis also confirmed, by comparing the obtained diffraction patterns of both ice binding and non-binding additives, that the observed hexagonal ice diffraction patterns obtained cannot be used to determine which crystal faces are being bound. This method may help in the discovery of new IRI active materials as well as enabling kinetic analysis of ice growth

    Importance of Baryon-Baryon Coupling in Hypernuclei

    Get PDF
    The ΛN−ΣN\Lambda N - \Sigma N coupling in Λ\Lambda--hypernuclei and ΛΛ−ΞN\Lambda \Lambda - \Xi N coupling in ΛΛ\Lambda \Lambda--hypernuclei produce novel physics not observed in the conventional, nonstrange sector. Effects of Λ↔Σ\Lambda \leftrightarrow \Sigma conversion in Λ3^3_{\Lambda}H are reviewed. The role of ΛN−ΣN\Lambda N - \Sigma N coupling suppression in the A=4,5A=4,5 Λ\Lambda--hypernuclei due to Pauli blocking is highlighted, and the implications for the structure of    Λ10^{10}_{\;\, \Lambda}B are explored. Suppression of ΛΛ−ΞN\Lambda \Lambda - \Xi N conversion in ΛΛ     6^{\;\;\, 6}_{\Lambda \Lambda}He is hypothesized as the reason that the matrix element is small. Measurement of ΛΛ     4^{\;\;\, 4}_{\Lambda \Lambda}H is proposed to investigate the full ΛΛ−ΞN\Lambda \Lambda - \Xi N interaction. The implication for ΛΛ\Lambda \Lambda analog states is discussed.Comment: 17 pages LATEX, 1 figure uuencoded postscrip

    The Effect of Low Levels of Zirconia Addition on the Mechanical Properties of Hydroxyapatite

    Get PDF
    The effect of low levels of zirconia addition on the mechanical properties of hydroxyapatite was analyzed. Optimum amount of zirconia required to prevent decomposition of hydroxyapatite during sintering was determined. The particle size, morphology and surface area were measured and calcium to phosphorus ratio and trace element impurity content were determined by x-ray fluorescence. Low level addition of zirconia resulted in composites with better mechanical properties and minimum levels of decomposition

    Vortex-type elastic structured media and dynamic shielding

    Full text link
    The paper addresses a novel model of metamaterial structure. A system of spinners has been embedded into a two-dimensional periodic lattice system. The equations of motion of spinners are used to derive the expression for the chiral term in the equations describing the dynamics of the lattice. Dispersion of elastic waves is shown to possess innovative filtering and polarization properties induced by the vortextype nature of the structured media. The related homogenised effective behavior is obtained analytically and it has been implemented to build a shielding cloak around an obstacle. Analytical work is accompanied by numerical illustrations.Comment: 24 pages, 13 figure

    The role of gas infall in the evolution of disc galaxies

    Full text link
    Spiral galaxies are thought to acquire their gas through a protracted infall phase resulting in the inside-out growth of their associated discs. For field spirals, this infall occurs in the lower density environments of the cosmic web. The overall infall rate, as well as the galactocentric radius at which this infall is incorporated into the star-forming disc, plays a pivotal role in shaping the characteristics observed today. Indeed, characterising the functional form of this spatio-temporal infall in-situ is exceedingly difficult, and one is forced to constrain these forms using the present day state of galaxies with model or simulation predictions. We present the infall rates used as input to a grid of chemical evolution models spanning the mass spectrum of discs observed today. We provide a systematic comparison with alternate analytical infall schemes in the literature, including a first comparison with cosmological simulations. Identifying the degeneracies associated with the adopted infall rate prescriptions in galaxy models is an important step in the development of a consistent picture of disc galaxy formation and evolution.Comment: 12 pages, 12 figures, MNRAS, accepte

    The role of gas infall in the evolution of disc galaxies

    Get PDF
    Spiral galaxies are thought to acquire their gas through a protracted infall phase resulting in the inside-out growth of their associated discs. For field spirals, this infall occurs in the lower density environments of the cosmic web. The overall infall rate, as well as the galactocentric radius at which this infall is incorporated into the star-forming disc, plays a pivotal role in shaping the characteristics observed today. Indeed, characterising the functional form of this spatio-temporal infall in-situ is exceedingly difficult, and one is forced to constrain these forms using the present day state of galaxies with model or simulation predictions. We present the infall rates used as input to a grid of chemical evolution models spanning the mass spectrum of discs observed today. We provide a systematic comparison with alternate analytical infall schemes in the literature, including a first comparison with cosmological simulations. Identifying the degeneracies associated with the adopted infall rate prescriptions in galaxy models is an important step in the development of a consistent picture of disc galaxy formation and evolution

    Preoperative neutrophil-lymphocyte ratio and outcome from coronary artery bypass grafting

    Get PDF
    Background: An elevated preoperative white blood cell count has been associated with a worse outcome after coronary artery bypass grafting (CABG). Leukocyte subtypes, and particularly the neutrophil-lymphocyte (N/L) ratio, may however, convey superior prognostic information. We hypothesized that the N/L ratio would predict the outcome of patients undergoing surgical revascularization. Methods: Baseline clinical details were obtained prospectively in 1938 patients undergoing CABG. The differential leukocyte was measured before surgery, and patients were followed-up 3.6 years later. The primary end point was all-cause mortality. Results: The preoperative N/L ratio was a powerful univariable predictor of mortality (hazard ratio [HR] 1.13 per unit, P 3.36). Conclusion: An elevated N/L ratio is associated with a poorer survival after CABG. This prognostic utility is independent of other recognized risk factors.Peer reviewedAuthor versio
    • 

    corecore