13,991 research outputs found

    Low-dose alum application trialled as a management tool for internal nutrient loads in Lake Okaro, New Zealand

    Get PDF
    Aluminium sulfate (alum) was applied to Lake Okaro, a eutrophic New Zealand lake with recurrent cyanobacterial blooms, to evaluate its suitability for reducing trophic status and bloom frequency. The dose yielded 0.6 g aluminium m–3 in the epilimnion. Before dosing, pH exceeded 8 in epilimnetic waters but was optimal for flocculation (6–8) below 4 m depth. After dosing, there was no significant change in water clarity, hypolimnetic pH decreased to 5.5, and soluble aluminium exceeded recommended guidelines for protection of freshwater organisms. Epilimnetic phosphate concentrations decreased from 40 to 5 mg m–3 and total nitrogen (TN):total phosphorus (TP) mass ratios increased from 7:1 to 37:1. The dominant phytoplankton species changed from Anabaena spp. before dosing, to Ceratium hirudinella , then Staurastrum sp. after dosing. Detection of effectiveness of dosing may have been limited by sampling duration and design, as well as the low alum dose. The decrease in hypolimnetic pH and epilimnetic TP, and increase in Al3+ and chlorophyll a, are attributed to the low alkalinity lake water and coincidence of alum dosing with a cyanobacterial bloom and high pH

    Monte Carlo simulation of baryon and lepton number violating processes at high energies

    Get PDF
    We report results obtained with the first complete event generator for electroweak baryon and lepton number violating interactions at supercolliders. We find that baryon number violation would be very difficult to establish, but lepton number violation can be seen provided at least a few hundred L violating events are available with good electron or muon identification in the energy range 10 GeV to 1 TeV.Comment: 40 Pages uuencoded LaTeX (20 PostScript figures included), Cavendish-HEP-93/6, CERN-TH.7090/9

    Electroweak instantons at non-zero Weinberg angle

    Get PDF
    Previous calculations of instanton effects in electroweak theory have concentrated on the case of zero Weinberg angle θw\theta_w, where the U(1) hypercharge field decouples. In this paper we extend the instanton calculation to non-zero θw\theta_w, by constructing a perturbation expansion. This allows for the first time the study of photon production at B and L number violating verticies. We find that the orientation of the instanton solution in isospin space has to be carefully considered to avoid unphysical results.Comment: uuencoded postscript, 10 pages

    Information-theoretic determination of ponderomotive forces

    Full text link
    From the equilibrium condition δS=0\delta S=0 applied to an isolated thermodynamic system of electrically charged particles and the fundamental equation of thermodynamics (dU=TdS(fdr)dU = T dS-(\mathbf{f}\cdot d\mathbf{r})) subject to a new procedure, it is obtained the Lorentz's force together with non-inertial terms of mechanical nature. Other well known ponderomotive forces, like the Stern-Gerlach's force and a force term related to the Einstein-de Haas's effect are also obtained. In addition, a new force term appears, possibly related to a change in weight when a system of charged particles is accelerated.Comment: 10 page

    Reflections on a coaching pilot project in healthcare settings

    Get PDF
    This paper draws on personal reflection of coaching experiences and learning as a coach to consider the relevance of these approaches in a management context with a group of four healthcare staff who participated in a pilot coaching project. It explores their understanding of coaching techniques applied in management settings via their reflections on using coaching approaches and coaching applications as healthcare managers. Coaching approaches can enhance a manager’s skill portfolio and offer the potential benefits in terms of successful goal achievement, growth, mutual learning and development for both themselves and staff they work with in task focused scenarios

    Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3

    Get PDF
    We present a magnetoresistive-photoresistive device based on the interaction of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that undergoes light-induced strain. The magnitude of the resistance and magnetoresistance in the CoFe film can be controlled by the wavelength of the incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic magnetoresistance is detected due to an additional magnetoelastic contribution to magnetic anisotropy of the CoFe film. This effect may find applications in photo-sensing systems, wavelength detectors and can possibly open a research development in light-controlled magnetic switching properties for next generation magnetoresistive memory devices.Comment: 5 pages, 4 figures, journal pape

    Grand potential in thermodynamics of solid bodies and surfaces

    Full text link
    Using the chemical potential of a solid in a dissolved state or the corresponding component of the chemical potential tensor at equilibrium with the solution, a new concept of grand thermodynamic potential for solids has been suggested. This allows generalizing the definition of Gibbs' quantity σ\sigma (surface work often called the solid-fluid interfacial free energy) at a planar surface as an excess grand thermodynamic potential per unit surface area that (1) does not depend on the dividing surface location and (2) is common for fluids and solids.Comment: 6 page

    Symbiont 'bleaching' in planktic foraminifera during the Middle Eocene Climatic Optimum

    Get PDF
    Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (δ13C) was temporarily reduced for ∼100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum δ18O values and reduction in test size–δ13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera

    All-Optical Switching with Transverse Optical Patterns

    Full text link
    We demonstrate an all-optical switch that operates at ultra-low-light levels and exhibits several features necessary for use in optical switching networks. An input switching beam, wavelength λ\lambda, with an energy density of 10210^{-2} photons per optical cross section [σ=λ2/(2π)\sigma=\lambda^2/(2\pi)] changes the orientation of a two-spot pattern generated via parametric instability in warm rubidium vapor. The instability is induced with less than 1 mW of total pump power and generates several μ\muWs of output light. The switch is cascadable: the device output is capable of driving multiple inputs, and exhibits transistor-like signal-level restoration with both saturated and intermediate response regimes. Additionally, the system requires an input power proportional to the inverse of the response time, which suggests thermal dissipation does not necessarily limit the practicality of optical logic devices
    corecore