9,360 research outputs found

    The photon blockade effect in optomechanical systems

    Full text link
    We analyze the photon statistics of a weakly driven optomechanical system and discuss the effect of photon blockade under single photon strong coupling conditions. We present an intuitive interpretation of this effect in terms of displaced oscillator states and derive analytic expressions for the cavity excitation spectrum and the two photon correlation function g(2)(0)g^{(2)}(0). Our results predict the appearance of non-classical photon correlations in the combined strong coupling and sideband resolved regime, and provide a first detailed understanding of photon-photon interactions in strong coupling optomechanics

    Optical bistability involving planar metamaterial with broken structural symmetry

    Full text link
    We report on a bistable light transmission through a planar metamaterial composed of a metal pattern of weakly asymmetric elements placed on a nonlinear substrate. Such structure bears the Fano-like sharp resonance response of a trapped-mode excitation. The feedback required for bistability is provided by the coupling between the strong antiphased trapped-mode-resonance currents excited on the metal elements and the intensity of inner field in the nonlinear substrate.Comment: 4 pages, 4 figure

    Convex Functions and Spacetime Geometry

    Full text link
    Convexity and convex functions play an important role in theoretical physics. To initiate a study of the possible uses of convex functions in General Relativity, we discuss the consequences of a spacetime (M,gμν)(M,g_{\mu \nu}) or an initial data set (Σ,hij,Kij)(\Sigma, h_{ij}, K_{ij}) admitting a suitably defined convex function. We show how the existence of a convex function on a spacetime places restrictions on the properties of the spacetime geometry.Comment: 26 pages, latex, 7 figures, improved version. some claims removed, references adde

    Elastic Scattering of Pions From the Three-nucleon System

    Get PDF
    We examine the scattering of charged pions from the trinucleon system at a pion energy of 180 MeV. The motivation for this study is the structure seen in the experimental angular distribution of back-angle scattering for pi+ 3He and pi- 3H but for neither pi- 3He nor pi+ 3H. We consider the addition of a double spin flip term to an optical model treatment and find that, though the contribution of this term is non-negligible at large angles for pi+ 3He and pi- 3H, it does not reproduce the structure seen in the experiment.Comment: 15 pages + 5 figure

    Exact Solution of the Infinite-Range Quantum Mattis Model

    Full text link
    We have solved the quantum version of the Mattis model with infinite-range interactions. A variational approach gives the exact solution for the infinite-range system, in spite of the non-commutative nature of the quantum spin components; this implies that quantum effects are not predominant in determining the macroscopic properties of the system. Nevertheless, the model has a surprisingly rich phase behaviour, exhibiting phase diagrams with tricritical, three-phase and critical end points.Comment: 14 pages, 11 figure

    Evaluation of configurational entropy of a model liquid from computer simulations

    Full text link
    Computer simulations have been employed in recent years to evaluate the configurational entropy changes in model glass-forming liquids. We consider two methods, both of which involve the calculation of the `intra-basin' entropy as a means for obtaining the configurational entropy. The first method involves the evaluation of the intra-basin entropy from the vibrational frequencies of inherent structures, by making a harmonic approximation of the local potential energy topography. The second method employs simulations that confine the liquid within a localized region of configuration space by the imposition of constraints; apart from the choice of the constraints, no further assumptions are made. We compare the configurational entropies estimated for a model liquid (binary mixture of particles interacting {\it via} the Lennard-Jones potential) for a range of temperatures, at fixed density.Comment: 10 pages, 5 figures, Proceedings of "Unifying Concepts in Glass Physics" Trieste 1999 (to appear in J. Phys. Cond. Mat.

    Low-energy Antiproton Interaction with Helium

    Get PDF
    An ab initio potential for the interaction of the neutral helium atom with antiprotons and protons is calculated using the Born-Oppenheimer approximation. Using this potential, the annihilation cross section for antiprotons in the energy range 0.01 microvolt to 1 eV is calculated.Comment: 13 pages, 7 figures, LaTe

    Monte Carlo Eikonal Scattering

    Full text link
    Monte Carlo evaluation is used to calculate heavy-ion elastic scattering including the center-of-mass correction and the Coulomb interaction.Angular distributions are presented for a number of nuclear pairs over a wide energy range using nucleon-nucleon scattering parameters taken from phase-shift analyses and densities from independent sources. A technique for the efficient expansion of the Glauber amplitude in partial waves is developed

    The Reaction 7Li(pi+,pi-)7B and its Implications for 7B

    Full text link
    The reaction 7Li(pi+,pi-)7B has been measured at incident pion energies of 30-90 MeV. 7Li constitutes the lightest target nucleus, where the pionic charge exchange may proceed as a binary reaction to a discrete final state. Like in the Delta-resonance region the observed cross sections are much smaller than expected from the systematics found for heavier nuclei. In analogy to the neutron halo case of 11Li this cross section suppression is interpreted as evidence for a proton halo in the particle-unstable nucleus 7B.Comment: 4 pages, 4 figure

    Polarization switching and nonreciprocity in symmetric and asymmetric magnetophotonic multilayers with nonlinear defect

    Full text link
    A one-dimensional magnetophotonic crystal with a nonlinear defect placed either symmetrically or asymmetrically inside the structure is considered. Simultaneous effects of time-reversal nonreciprocity and nonlinear spatial asymmetry in the structure are studied. Bistable response is demonstrated in a such system, accompanied by abrupt polarization switching between two circular or elliptical polarizations for transmitted and reflected waves. The effect is explained in terms of field localization at defect-mode spectral resonances and can be used in the design of thin-film optical isolators and polarization transformation devices.Comment: 20 pages, 8 figure
    • …
    corecore