Computer simulations have been employed in recent years to evaluate the
configurational entropy changes in model glass-forming liquids. We consider two
methods, both of which involve the calculation of the `intra-basin' entropy as
a means for obtaining the configurational entropy. The first method involves
the evaluation of the intra-basin entropy from the vibrational frequencies of
inherent structures, by making a harmonic approximation of the local potential
energy topography. The second method employs simulations that confine the
liquid within a localized region of configuration space by the imposition of
constraints; apart from the choice of the constraints, no further assumptions
are made. We compare the configurational entropies estimated for a model liquid
(binary mixture of particles interacting {\it via} the Lennard-Jones potential)
for a range of temperatures, at fixed density.Comment: 10 pages, 5 figures, Proceedings of "Unifying Concepts in Glass
Physics" Trieste 1999 (to appear in J. Phys. Cond. Mat.