4 research outputs found

    Discrete phase space based on finite fields

    Full text link
    The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2N x 2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our N x N phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space.Comment: 60 pages; minor corrections and additional references in v2 and v3; improved historical introduction in v4; references to quantum error correction in v5; v6 corrects the value quoted for the number of similarity classes for N=

    Wigner Functions and Separability for Finite Systems

    Full text link
    A discussion of discrete Wigner functions in phase space related to mutually unbiased bases is presented. This approach requires mathematical assumptions which limits it to systems with density matrices defined on complex Hilbert spaces of dimension p^n where p is a prime number. With this limitation it is possible to define a phase space and Wigner functions in close analogy to the continuous case. That is, we use a phase space that is a direct sum of n two-dimensional vector spaces each containing p^2 points. This is in contrast to the more usual choice of a two-dimensional phase space containing p^(2n) points. A useful aspect of this approach is that we can relate complete separability of density matrices and their Wigner functions in a natural way. We discuss this in detail for bipartite systems and present the generalization to arbitrary numbers of subsystems when p is odd. Special attention is required for two qubits (p=2) and our technique fails to establish the separability property for more than two qubits.Comment: Some misprints have been corrected and a proof of the separability of the A matrices has been adde
    corecore