13,199 research outputs found

    Two loop and all loop finite 4-metrics

    Get PDF
    In pure Einstein theory, Ricci flat Lorentzian 4-metrics of Petrov types III or N have vanishing counter terms up to and including two loops. Moreover for pp-waves and type-N spacetimes of Kundt's class which admit a non-twisting, non expanding, null congruence all possible invariants formed from the Weyl tensor and its covariant derivatives vanish. Thus these Lorentzian metrics suffer no quantum corrections to all loop orders. By contrast for complete non-singular Riemannian metrics the two loop counter term vanishes only if the metric is flat.Comment: 4 pages Latex file, no figure

    Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons

    Get PDF
    We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Einstein metrics on spheres and products of spheres of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by numerical methods we establish that Bohm metrics on S^5 have negative eigenvalues too. We argue that all the Bohm metrics will have negative modes. These results imply that higher-dimensional black-hole spacetimes where the Bohm metric replaces the usual round sphere metric are classically unstable. We also show that the stability criterion for Freund-Rubin solutions is the same as for black-hole stability, and hence such solutions using Bohm metrics will also be unstable. We consider possible endpoints of the instabilities, and show that all Einstein-Sasaki manifolds give stable solutions. We show how Wick rotation of Bohm metrics gives spacetimes that provide counterexamples to a strict form of the Cosmic Baldness conjecture, but they are still consistent with the intuition behind the cosmic No-Hair conjectures. We show how the Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We argue that Lorentzian Bohm metrics are unstable to decay to de Sitter spacetime. We also argue that noncompact versions of the Bohm metrics have infinitely many negative Lichernowicz modes, and we conjecture a general relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet problem for Einstein's equations.Comment: 53 pages, 11 figure

    Single-charge rotating black holes in four-dimensional gauged supergravity

    Full text link
    We consider four-dimensional U(1)^4 gauged supergravity, and obtain asymptotically AdS_4, non-extremal, charged, rotating black holes with one non-zero U(1) charge. The thermodynamic quantities are computed. We obtain a generalization that includes a NUT parameter. The general solution has a discrete symmetry involving inversion of the rotation parameter, and has a string frame metric that admits a rank-2 Killing-Stackel tensor.Comment: 9 page

    Black-Hole-Wave Duality in String Theory

    Get PDF
    Extreme 4-dimensional dilaton black holes embedded into 10-dimensional geometry are shown to be dual to the gravitational waves in string theory. The corresponding gravitational waves are the generalization of pp-fronted waves, called supersymmetric string waves. They are given by Brinkmann metric and the two-form field, without a dilaton. The non-diagonal part of the metric of the dual partner of the wave together with the two-form field correspond to the vector field in 4-dimensional geometry of the charged extreme black holes.Comment: 12 pages, LaTeX, preprint UG-3/94, SU-ITP-94-11, QMW-PH-94-1

    Vacuum decay via Lorentzian wormholes

    Full text link
    We speculate about the spacetime description due to the presence of Lorentzian wormholes (handles in spacetime joining two distant regions or other universes) in quantum gravity. The semiclassical rate of production of these Lorentzian wormholes in Reissner-Nordstr\"om spacetimes is calculated as a result of the spontaneous decay of vacuum due to a real tunneling configuration. In the magnetic case it only depends on the field theoretical fine structure constant. We predict that the quantum probability corresponding to the nucleation of such geodesically complete spacetimes should be actually negligible in our physical Universe

    Branes, AdS gravitons and Virasoro symmetry

    Get PDF
    We consider travelling waves propagating on the anti-de Sitter (AdS) background. It is pointed out that for any dimension d, this space of solutions has a Virasoro symmetry with a non-zero central charge. This result is a natural generalization to higher dimensions of the three-dimensional Brown-Henneaux symmetry.Comment: 4 pages REVTe

    Quantum Topological Invariants, Gravitational Instantons and the Topological Embedding

    Get PDF
    Certain topological invariants of the moduli space of gravitational instantons are defined and studied. Several amplitudes of two and four dimensional topological gravity are computed. A notion of puncture in four dimensions, that is particularly meaningful in the class of Weyl instantons, is introduced. The topological embedding, a theoretical framework for constructing physical amplitudes that are well-defined order by order in perturbation theory around instantons, is explicitly applied to the computation of the correlation functions of Dirac fermions in a punctured gravitational background, as well as to the most general QED and QCD amplitude. Various alternatives are worked out, discussed and compared. The quantum background affects the propagation by generating a certain effective ``quantum'' metric. The topological embedding could represent a new chapter of quantum field theory.Comment: LaTeX, 18 pages, no figur

    The Action of Instantons with Nut Charge

    Full text link
    We examine the effect of a non-trivial nut charge on the action of non-compact four-dimensional instantons with a U(1) isometry. If the instanton action is calculated by dimensionally reducing along the isometry, then the nut charge is found to make an explicit non-zero contribution. For metrics satisfying AF, ALF or ALE boundary conditions, the action can be expressed entirely in terms of quantities (including the nut charge) defined on the fixed point set of the isometry. A source (or sink) of nut charge also implies the presence of a Misner string coordinate singularity, which will have an important effect on the Hamiltonian of the instanton.Comment: 25 page

    The Decay of Magnetic Fields in Kaluza-Klein Theory

    Get PDF
    Magnetic fields in five-dimensional Kaluza-Klein theory compactified on a circle correspond to ``twisted'' identifications of five dimensional Minkowski space. We show that a five dimensional generalisation of the Kerr solution can be analytically continued to construct an instanton that gives rise to two possible decay modes of a magnetic field. One decay mode is the generalisation of the ``bubble decay" of the Kaluza-Klein vacuum described by Witten. The other decay mode, rarer for weak fields, corresponds in four dimensions to the creation of monopole-anti-monopole pairs. An instanton for the latter process is already known and is given by the analytic continuation of the \KK\ Ernst metric, which we show is identical to the five dimensional Kerr solution. We use this fact to illuminate further properties of the decay process. It appears that fundamental fermions can eliminate the bubble decay of the magnetic field, while allowing the pair production of Kaluza-Klein monopoles.Comment: 25 pages, one figure. The discussion of fermions has been revised: We show how fundamental fermions can eliminate the bubble-type instability but still allow pair creation of monopole
    • …
    corecore