896 research outputs found

    Results from the third Scottish National Prevalence Survey: is a population health approach now needed to prevent healthcare-associated infections?

    Get PDF
    Summary Background Healthcare associated infections (HAI) are a major public health concern and a significant cause of morbidity and mortality. A robust and current evidence base that is specific to local, national and Europe-wide settings is necessary to inform the development of strategies to reduce HAI and contain antimicrobial resistance (AMR). Aim To measure the prevalence of HAI and antimicrobial prescribing and identify key priority areas for interventions to reduce the burden of infection. Methods A national rolling PPS in National Health Service (NHS) acute, NHS non-acute, NHS paediatric and independent hospitals was carried out between September and November 2016 using the European Centre for Disease Prevention and Control protocol designed for the European PPS. Findings The prevalence of HAI was 4.6%, 2.7% and 3.2% in acute adults, paediatric and non-acute patient groups, respectively. The most common HAI types reported in adult patients were urinary tract infection and pneumonia. The prevalence of antimicrobial prescribing was 35.7%, 29.3% and 13.8% in acute adults, paediatric and non-acute patient groups, respectively. Respiratory, skin and soft tissue, gastrointestinal and urinary tract infections were the most common infections being treated at the time of survey. Conclusion HAI continues to be a public health concern in Scotland. UTI and pneumonia continue to place a significant burden on patients and on healthcare delivery, including those that develop in the community and require hospital admission. A broader population health approach which focuses on reducing the risk of infection upstream would reduce these infections in both community and hospital settings

    Discrete phase space based on finite fields

    Full text link
    The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2N x 2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our N x N phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space.Comment: 60 pages; minor corrections and additional references in v2 and v3; improved historical introduction in v4; references to quantum error correction in v5; v6 corrects the value quoted for the number of similarity classes for N=

    Thermal divergences on the event horizons of two-dimensional black holes

    Full text link
    The expectation value of the stress-energy tensor \langleT_{\mu\nu}\rangle of a free conformally invariant scalar field is computed in a general static two-dimensional black hole spacetime when the field is in either a zero temperature vacuum state or a thermal state at a nonzero temperature. It is found that for every static two-dimensional black hole the stress-energy diverges strongly on the event horizon unless the field is in a state at the natural black hole temperature which is defined by the surface gravity of the event horizon. This implies that both extreme and nonextreme two-dimensional black holes can only be in equilibrium with radiation at the natural black hole temperature.Comment: 13 pages, REVTe

    Loss of Atrx Affects Trophoblast Development and the Pattern of X-Inactivation in Extraembryonic Tissues

    Get PDF
    ATRX is an X-encoded member of the SNF2 family of ATPase/helicase proteins thought to regulate gene expression by modifying chromatin at target loci. Mutations in ATRX provided the first example of a human genetic disease associated with defects in such proteins. To better understand the role of ATRX in development and the associated abnormalities in the ATR-X (alpha thalassemia mental retardation, X-linked) syndrome, we conditionally inactivated the homolog in mice, Atrx, at the 8- to 16-cell stage of development. The protein, Atrx, was ubiquitously expressed, and male embryos null for Atrx implanted and gastrulated normally but did not survive beyond 9.5 days postcoitus due to a defect in formation of the extraembryonic trophoblast, one of the first terminally differentiated lineages in the developing embryo. Carrier female mice that inherit a maternal null allele should be affected, since the paternal X chromosome is normally inactivated in extraembryonic tissues. Surprisingly, however, some carrier females established a normal placenta and appeared to escape the usual pattern of imprinted X-inactivation in these tissues. Together these findings demonstrate an unexpected, specific, and essential role for Atrx in the development of the murine trophoblast and present an example of escape from imprinted X chromosome inactivation

    Astrophysical Bounds on Global Strings

    Get PDF
    Global topological defects produce nonzero stress-energy throughout spacetime, and as a result can have observable gravitational influence on surrounding matter. Gravitational effects of global strings are used to place bounds on their cosmic abundance. The minimum separation between global strings is estimated by considering the defects' contribution to the cosmological energy density. More rigorous constraints on the abundance of global strings are constructed by examining the tidal forces such defects will have on observable astrophysical systems. The small number of observed tidally disrupted systems indicates there can be very few of these objects in the observable universe.Comment: 14 pages, REVTe

    Kaluza-Klein Black Holes in String Theory

    Full text link
    Exact solutions of heterotic string theory corresponding to four-dimensional magnetic black holes in N=4N=4 supergravity are described. The solutions describe the black holes in the throat limit, and consist of a tensor product of an SU(2)SU(2) WZW orbifold with the linear dilaton vacuum, supersymmetrized to (1,0)(1,0) world sheet SUSY. One dimension of the SU(2)SU(2) model is interpreted as a compactified fifth dimension, leading to a four dimensional solution with a Kaluza-Klein gauge field having a magnetic monopole background; this corresponds to a solution in N=4N=4 supergravity, since that theory is obtained by dimensional reduction of string theory.Comment: 13p. uses Harvma

    Renormalization of the charged scalar field in curved space

    Full text link
    The DeWitt-Schwinger proper time point-splitting procedure is applied to a massive complex scalar field with arbitrary curvature coupling interacting with a classical electromagnetic field in a general curved spacetime. The scalar field current is found to have a linear divergence. The presence of the external background gauge field is found to modify the stress-energy tensor results of Christensen for the neutral scalar field by adding terms of the form (eF)2(eF)^2 to the logarithmic counterterms. These results are shown to be expected from an analysis of the degree of divergence of scalar quantum electrodynamics.Comment: 24 pages REVTe
    • 

    corecore