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Abstract

Finite N effects on the time evolution of fuzzy 2-spheres moving in flat spacetime are studied

using the non-Abelian DBI action for N D0-branes. Constancy of the speed of light leads

to a definition of the physical radius in terms of symmetrised traces of large powers of

Lie algebra generators. These traces, which determine the dynamics at finite N , have a

surprisingly simple form. The energy function is given by a quotient of a free multi-particle

system, where the dynamics of the individual particles are related by a simple scaling of

space and time. We show that exotic bounces of the kind seen in the 1/N expansion do

not exist at finite N . The dependence of the time of collapse on N is not monotonic. The

time-dependent brane acts as a source for gravity which, in a region of parameter space,

violates the dominant energy condition. We find regimes, involving both slowly collapsing

and rapidly collapsing branes, where higher derivative corrections to the DBI action can be

neglected. We propose some generalised symmetrised trace formulae for higher dimensional

fuzzy spheres and observe an application to D-brane charge calculations.
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1 Introduction

The symmetrised trace prescription for the non-Abelian action of multiple D0-branes was

proposed in [1] and extended to include background RR fluxes in [2]. An interesting time

dependent system, in which the need for an exact prescription arises, is a spherical bound

state of N D0-branes with a spherical D2-brane, for finite values of N . This can be studied

both from the point of view of the Abelian D2 DBI action and the non-Abelian D0-DBI

action. The latter configuration also has an M-theory analogue, that of a time dependent

spherical M2-brane, which has been studied in the context of matrix theory [3, 4]. In [5]

it was shown that the D0-brane construction, based on the fuzzy 2-sphere, agrees with the

Abelian D2-construction at large N . 1/N corrections coming from the symmetrised trace

and a finite N example were also studied. Here we develop further the study of finite N .

The need for the non-linear DBI action as opposed to the Yang-Mills limit of the lower

dimensional brane was recognised in a spatial D1 ⊥ D3 analog of the D0 − D2 system [6].

In this paper we extend the calculation of symmetrised traces from the spin half example

of [5] to general representations of SO(3). These results allow us to study in detail the

finite N physics of the time-dependent fuzzy two-sphere. We begin our finite N analysis

with a careful discussion on how to extract the physical radius from the matrices of the

non-Abelian ansatz. The standard formula used in the Myers effect is R2 = Tr(ΦiΦi)/N .

Requiring consistency with a constant speed of light, independent of N , leads us to propose an

equation in section 2, which agrees with the standard formula in large N commutative limits,

but disagrees in general. Section 3 gives finite N formulae for the energy and Lagrangian of

the time-dependent fuzzy 2-sphere. We also give the conserved pressure which is relevant for

the D1 ⊥ D3 system. In section 4, we study the time of collapse as a function of N . In the

region of large N , for fixed initial radius R0, the time decreases as N decreases. However,

at some point there is a turn-around in this trend and the time of collapse for spin half is

actually larger than at large N . We also investigate the quantity E2 − p2, where E is the

energy and p the momentum. This quantity is of interest when we view the time-dependent

D-brane as a source for spacetime fields. E is the T 00 component of the stress tensor, and

p is the T 0r component as we show by a generalisation of arguments previously used in the

context of BFSS matrix theory. For the large N formulae, E2−p2 is always positive. At finite

N , this can be negative, although the speed of radial motion is less than the speed of light.

Given the relation to the stress tensor, we can interpret this as a violation of the dominant

energy condition. The other object of interest is the proper acceleration along the trajectory

of a collapsing D2-brane. We find analytic and numerical evidence that there are regions of

both large R and small R, with small and relativistic velocities respectively, where the proper

accelerations can be small. This is intriguing since the introduction of stringy and higher
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derivative effects in the small velocity region can be done with an adiabatic approximation,

but it is interesting to consider approximation methods for the relativistic region.

In section 5, we discuss the higher fuzzy sphere case [7, 8, 9, 10, 11, 12, 13, 14]. We give a

general formula for STr(XiXi)
m, in general irreducible, representations of SO(2k +1). This

formula is motivated by some considerations surrounding D-brane charges and the ADHM

construction, which are discussed in more detail in [30]. Some of the motivation is explained

in Appendix A. This allows us a partial discussion of finite N effects for higher fuzzy spheres.

We are able to calculate the physical radius following the argument of section 2; however, in

general one needs other symmetrised traces involving elements of the Lie algebra so(2k +1).

The symmetrised trace prescription, which we study in detail in this paper, is known to

correctly match open string calculations up to the first two orders in an α′ expansion, but the

correct answer deviates from the (α′)3 term onwards [15, 16, 17, 18]. It is possible however

that for certain special symmetric background configurations, it may give the correct physics

to all orders. The D-brane charge computation discussed in the Appendix can be viewed as

a possible indication in this direction. In any case, it is important to study the corrections

coming from this prescription to all orders, in order to be able to systematically modify it, if

that becomes necessary when the correct non-Abelian D-brane action is known. Conversely

the physics of collapsing D-branes can be used to constrain the form of the non-Abelian

DBI.

2 Lorentz invariance and the physical radius

We will study the collapse of a cluster of N D0-branes in the shape of a fuzzy S2k, in a

flat background. This configuration is known to have a large-N dual description in terms

of spherical D(2k) branes with N units of flux. The microscopic D0 description can be

obtained from the non-Abelian action for a number of coincident branes, proposed in [1, 2]

S0 = − 1

gsℓs

∫

dt STr
√

− det(M) , (2.1)

where

M =

(

−1 λ∂tΦj

−λ∂tΦi Qij

)

. (2.2)

Here a, b are worldvolume indices, the Φ’s are worldvolume scalars, λ = 2πℓ2
s and

Qij = δij + iλ[Φi, Φj ] . (2.3)

We will consider the time dependent ansätz

Φi = R̂(t)Xi , (2.4)
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The Xi are matrices obeying some algebra. The part of the action that depends purely on

the time derivatives and survives when R̂ = 0 is

SD0 =

∫

dtSTr
√

1 − λ2(∂tΦi)2 =

∫

dtSTr

√

1 − λ2(∂tR̂)2XiXi . (2.5)

For the fuzzy S2, the Xi = αi, for i = 1, 2, 3, are generators of the irreducible spin n/2

matrix representation of su(2), with matrices of size N = n + 1. In this case the algebra is

[αi, αj] = 2iǫijkαk (2.6)

and following [5], the action for N D0-branes can be reduced to

S0 = − 1

gsℓs

∫

dt STr

√

1 + 4λ2R̂4αiαi

√

1 − λ2(∂tR̂)2αiαi . (2.7)

If we define the physical radius using

R2
phys = λ2 lim

m→∞

STr(ΦiΦi)
m+1

STr(ΦiΦi)m
= λ2R̂2 lim

m→∞

STr(αiαi)
m+1

STr(αiαi)m
, (2.8)

we will find that the Lagrangian will be convergent for speeds between 0 and 1. The radius

of convergence will be exactly one - this follows by applying the ratio test to the series

expansion of

STr

√

1 − λ2 ˙̂
R2αiαi , (2.9)

where a dot indicates differentiation with respect to time. This leads to

R2
phys = λ2R̂2n2 . (2.10)

Using explicit formulae for the symmetrised traces we will also see that, with this definition

of the physical radius, the formulae for the Lagrangian and energy will have a first singularity

at Ṙphys = 1. In the large n limit, the definition of physical radius in (2.10) agrees with

[2], where Rphys is defined by R2
phys = 1

N
TrΦiΦi. Note that this definition of the physical

radius will also be valid for the higher dimensional fuzzy spheres, and more generally in any

matrix construction, where the terms in the non-Abelian DBI action depending purely on

the velocity, are of the form

√

1 − λ2XiXi(∂tR̂)2.

In what follows, the sums we get in expanding the square root are conveniently written

in terms of r, s, defined by r4 = 4λ2R̂4 and s2 = λ2 ˙̂
R2. It is also useful to define

L2 =
λn

2
,

r̂2 =
R2

phys

L2
= r2n,

ŝ2 = s2n2 . (2.11)

The r̂ and ŝ variables approach the variables called r, s in the large n discussion of [5].
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3 The fuzzy S2 at finite n

For the fuzzy S2, the relevant algebra is that of su(2), equation (2.6) above. We also have

the Casimir

c = αiαi = (N2 − 1) ,

where the last expression gives the value of the Casimir in the N -dimensional representation

where N = n + 1, and n is related to the spin J by n = 2J .

We present here the result of the full evaluation of the symmetrised trace for odd n

C(m, n) ≡ 1

n + 1
STr(αiαi)

m =
2(2m + 1)

n + 1

(n+1)/2
∑

i=1

(2i − 1)m , (3.1)

whilst for even n

C(m, n) ≡ 1

n + 1
STr(αiαi)

m =
2(2m + 1)

n + 1

n/2
∑

i=1

(2i)m . (3.2)

For m = 0 the second expression doesn’t have a correct analytic continuation and we will

impose the value STr(αiαi)
0 = 1. The expression for C(m, 1) was proved in [5]. A proof of

(3.2) for n = 2 is given in Appendix B. The general formulae given above are conjectured on

the basis of various examples, together with arguments related to D-brane charges. These

are given in Appendix A. There is also a generalisation to the case of higher dimensional

fuzzy spheres, described in section 6 and the Appendices.

We will now use the results (3.1), (3.2), to obtain the symmetrised trace corrected energy

for a configuration of N time dependent D0-branes blown up to a fuzzy S2. The reduced

action (2.7) can be expanded to give

L = −STr

√

1 + 4λ2R̂4αiαi

√

1 − λ2 ˙̂
R2αiαi

= −STr
√

1 + r4αiαi

√

1 − s2αiαi (3.3)

= −STr
∞
∑

m=0

∞
∑

l=0

s2mr4l(αiαi)
m+l

(

1/2

m

)(

1/2

l

)

(−1)m . (3.4)

The expression for the energy then follows directly -

E = −STr
∞
∑

m=0

∞
∑

l=0

s2mr4l(2m − 1)(αiαi)
m+l

(

1/2

m

)(

1/2

l

)

(−1)m, (3.5)

and after applying the symmetrised trace results given above we get the finite-n corrected

energy for any finite-dimensional irreducible representation of spin-n
2

for the fuzzy S2.
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For n = 1, 2 one finds

1

2
En=1(r, s) =

1 + 2r4 − r4s2

√
1 + r4(1 − s2)3/2

, (3.6)

1

3
En=2(r, s) =

2

3

(1 + 8r4 − 16r4s2)√
1 + 4r4(1 − 4s2)3/2

+
1

3
. (3.7)

We note that both of these expressions provide equations of motion which are solvable by

solutions of the form r̂ = t.

For the case of general n, it can be checked that the energy can be written

En(r, s) =

n+1

2
∑

l=1

2 − 2(2l − 1)2r4((2l − 1)2s2 − 2)
√

1 + (2l − 1)2r4(1 − (2l − 1)2s2)3/2
, (3.8)

for n-odd, while for n even

En(r, s) = 1 + 2

n
2
∑

l=1

1 − 8l2r4(2l2s2 − 1)√
1 + 4l2r4(1 − 4l2s2)3/2

. (3.9)

Equivalently, the closed form expression for the Lagrangian for n odd is

Ln(r, s) = −2

n+1

2
∑

l=1

1 − 2l2s2 + l2r4(2 − 3l2s2)√
1 + l2r4

√
1 − l2s2

, (3.10)

whilst for n-even

Ln(r, s) = −1 − 2

n
2
∑

l=1

1 − 2l2s2 + l2r4(2 − 3l2s2)√
1 + l2r4

√
1 − l2s2

. (3.11)

It is clear from these expressions that the equations of motion in the higher spin case will

also admit the r̂ = t solution. Note that, after the rescaling to physical variables (2.11),

these Lagrangians have no singularity for fixed r, in the region 0 ≤ s ≤ 1. In this sense they

are consistent with a fixed speed of light. However, they do not involve, for fixed r, the form√
dt2 − dr2 and hence do not have an so(1, 1) symmetry. It will be interesting to see if there

are generalisations of so(1, 1), possibly involving non-linear transformations of dt, dr, which

can be viewed as symmetries.

One can also get exact results for the symmetrised trace corrected pressure of the fuzzy-

S2 funnel configuration. The relationship between the time dependent D0−D2 system and

the static D1 ⊥ D3 intersection was established in [19]. In that paper, the large-n behaviour

of both systems was described by a genus one Riemann surface, which is a fixed orbit in

complexified phase space. This was done by considering the conserved energy and pressure
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and complexifying the variables r and ∂r = s respectively. Conservation of the energy-

momentum tensor then yielded elliptic curves in r, s, involving a fixed parameter r0, which

corresponded to the initial radius of the configuration. For our system we simply display the

general result and the first two explicit cases

P = STr

∞
∑

m=0

∞
∑

l=0

s2mr4l(2m − 1)(αiαi)
m+l

(

1/2

m

)(

1/2

l

)

(3.12)

1

2
Pn=1(r, s) = − 1 + 2r4 + r4s2

√
1 + r4(1 + s2)3/2

(3.13)

1

3
Pn=2(r, s) = −2

3

(1 + 8r4 + 16r4s2)√
1 + 4r4(1 + 4s2)3/2

− 1

3
. (3.14)

Similar results to those for the time dependent case hold for the exact expression of the

pressure for the general spin-n
2

representation. Note again that these expressions will provide

equations of motion which are solved by solutions of the form r̂ = 1/σ, where σ is the spatial

D1 worldvolume coordinate. An easy way to see this is to substitute s2 = r4 in (3.13), (3.14),

to find that the pressures become independent of r and s. Since the higher spin results for

the pressure are sums of the n = 1 or n = 2 cases, the argument extends.

3.1 Finite N dynamics as a quotient of free multi-particle dynamics

Using the formulae above, we can see that the fuzzy S2 energy for general n is determined

by the energy at n = 1. In the odd n case

C(m, n) =
2

n + 1
C(m, 1)

n+1

2
∑

i3=1

(2i3 − 1)2m =
2

n + 1
(2m + 1)

n+1

2
∑

i3=1

(2i3 − 1)2m .

Using this form for C(m, n) in the derivation of the energy, we get

En(r, s) =

n+1

2
∑

i3=1

En=1

(

r
√

(2i3 − 1) , s(2i3 − 1)
)

. (3.15)

Similarly, in the even n case, we find

En(r, s) =

n
2
∑

i3=1

En=2(r
√

i3 , s(i3)) . (3.16)

It is also possible to write C(m, 2) in terms of C(m, 1) as (for m 6= 0)

C(m, 2) =
22m+1

3
C(m, 1) =

22m+1

3
(2m + 1) . (3.17)
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Thus we can write En(r, s), for even n, in terms of the basic En=1(r, s) as

En(r, s) = 1 +

n
2
∑

i3=1

En=1(r
√

(2i3) , s(2i3)) . (3.18)

These expressions for the energy of spin n/2 can be viewed as giving the energy in terms

of a quotient of a multi-particle system, where the individual particles are associated with

the spin half system. For example, the energy function for (n + 1)/2 free particles with

dispersion relation determined by En=1 is
∑

i En=1(ri, si). By constraining the particles by

ri = r
√

2i + 1, si = s(2i + 1) we recover precisely (3.15).

We can now use this result to resolve a question raised by [5] on the exotic bounces

seen in the Lagrangians obtained by keeping a finite number of terms in the 1/n expansion.

With the first 1/n correction kept, the bounce appeared for a class of paths involving high

velocities with γ = 1√
1−ŝ2

∼ c1/4, near the limit of validity of the 1/n expansion. The bounce

disappeared when two orders in the expansion were kept. It was clear that whether the

bounces actually happened or not could only be determined by finite n calculations. These

exotic bounces would be apparent in constant energy contour plots for r, s as a zero in the

first derivative ∂r/∂s. In terms of the energies, this translates into the presence of a zero

of ∂E/∂s for constant r. It is easy to show from the explicit forms of the energies that

these quantities are strictly positive for n = 1 and n = 2. Since the energy for every n can

be written in terms of these, we conclude that there are no bounces for any finite n. This

resolves the question raised in [5] about the fate at finite n of these bounces.

We note that the large-n limit of the formula for the energy provides us with a consistency

check. In the large n-limit the sums above become integrals. For the odd-n case (even-n can

be treated in a similar fashion), define x = 2i3−1
n

∼ 2i3
n

. Then the sum in (3.15) goes over to

the integral
n

2

∫ 1

0

dx
2 − 2x2n2r4(x2n2s2 − 2)√
1 + x2n2r4(1 − x2s2)3/2

=
n
√

1 + r4n2

√
1 − s2n2

. (3.19)

By switching to the r̂, ŝ parameters the energy can be written as n
√

1+r̂4√
1−ŝ2

. This matches

exactly the large n limit used in [5].

4 Physical properties of the finite N solutions

4.1 Special limits where finite n and large n formulae agree

In the above we compared the finite n formula with the large n limit. Here we consider

the comparison between the fixed n formula and the large n one in some other limits. On
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physical grounds we expect some agreement. The D0 − D2 system at large r and small

velocity s is expected to be correctly described by the D2 equations. These coincide with

the large n limit of the D0. In the D1 ⊥ D3 system, the large r limit with large imaginary

s is also described by the D3.

Such an argument should extend to the finite-n case. In [19], these systems were simply

described by a genus one Riemann surface. However, in this case the energy functions are

more complicated and the resulting Riemann surfaces are of higher genus. We still expect

the region of the finite n curve, with large r and small, real s, to agree with the same limit

of the large n curve. We also expect the region of large r and large imaginary s to agree

with large n.

For concreteness consider odd n. Indeed for large r, small s, (3.8) gives

∑

l

4(2l − 1)r2 ∼ nr2 , (4.1)

which agrees with r̂2. In this limit, both the genus one curve and the high genus finite n

curves degenerate to a pair of points. Now consider large r and large imaginary s. This is

the right regime since the D1 ⊥ D3 system is described by r ∼ 1
σ

which means that r is

large at small σ, where dr
dσ

= is is large. For s = iS

P ∼ −nr2/S , (4.2)

which agrees with the same limit of the large n curve. In this limit, both the large n genus

one curve and the finite n curves of large genus degenerate to a genus zero curve.

The agreement in (4.1) between the D0 and D2 pictures is a stringy phenomenon. It

follows from the fact that there is really one system, a bound state of D0 and D2 branes. A

boundary conformal field theory would have boundary conditions that encode the presence

of both the D0 and D2. In the large N limit, the equations of motion coming from the

D0-effective action agree with the D2-effective action description at all R. This is because

at large N it is possible to specify a DBI-scaling where the regime of validity of both the D0

and D2 effective actions extends for all R. This follows because the DBI scaling has ℓs → 0

[20]. Indeed it is easy to see that the effective open string metric discussed in [20] has the

property that ℓ2
sG

−1 = ℓ2sR2

R4+L4 goes to zero when N → ∞ with L = ℓs

√
πN, R fixed. This

factor ℓ2
sG

−1 controls higher derivative corrections for the open string degrees of freedom.

At finite N , we can keep ℓ2
sG

−1 small, either when R ≪ L or R ≫ L. Therefore, there are

two regimes where the stringy description reduces to an effective field theory, where higher

derivatives can be neglected. The agreement holds for specified regions of R as well as s,

because the requirement ℓ2
sG

−1 ≪ 1 is not the only condition needed to ensure that higher

derivatives can be neglected. We also require that the proper acceleration is small. At large
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R, the magnetic flux density is small (as well as the higher derivatives being small) and

the D2-brane without non-commutativity is a good description. This is why the finite N

equations derived from the D0-brane effective field theory agree with the Abelian D2-picture.

For small R, small s, we can also neglect higher derivatives. This is the region where the

D0-Yang-Mills description is valid, or equivalently a strongly non-commutative D2-picture.

4.2 Finite N effects : Time of collapse, proper accelerations and violation of

the dominant energy condition

We will consider the time of collapse as a function of n using the definition of the physical

radius given in section (2). In order to facilitate comparison with the large n system, we will

be using r̂, ŝ variables. To begin with, consider the dimensionless acceleration, which can be

expressed as

−ŝ
∂ŝE|r̂
∂r̂E|ŝ

, (4.3)

with γ = 1/
√

(1 − ŝ2). As the sphere starts collapsing from r̂ = r̂0 down to r̂ = 0, the speed

changes from ŝ = 0 to a value less than ŝ = 1. It is easy to see that the acceleration does

not change sign in this region. Using the basic energy Ê = E/N from (3.6), we can write

∂Ên=1(r̂, ŝ)

∂ŝ
= ŝ

(3(1 + r̂4) + r̂4(1 − ŝ2))
√

(1 + r̂4)(1 − ŝ2)
5

2

,

∂Ên=1(r̂, ŝ)

∂r̂
=

2r̂3

(1 + r̂4)
3

2 (1 − ŝ2)
3

2

(

(1 + r̂4) + (1 − ŝ2)(2 + r̂4)

)

. (4.4)

Neither of the partial derivatives change sign in the range ŝ = 0 to 1. Hence the speed ŝ

increases monotonically. The same result is true for n > 1, since the energy functions for all

these cases can be written as a sum of the energies at n = 1.

In the n = 1 case , r̂ = r, ŝ = s. For fixed r0 the speed at r = 0 is given by

(1 − s2|n=1) =
(1 + r4

0)
1

3

(1 + 2r4
0)

2

3

. (4.5)

Comparing this with the large n formula

(1 − s2|n=∞) = (1 + r4
0)

−1, (4.6)

it is easy to see that
(

(1 − s2)|n=∞

(1 − s2)|n=1

)3

=
(1 + 2r4

0)
2

(1 + r4
0)

4
< 1, (4.7)

which establishes that the speed at r = 0 is larger for n = ∞.
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We can strengthen this result to show that the speed of collapse at all r < r0 is smaller

for n = 1 than at n = ∞. For any r < r0 we evaluate this energy function with the speed of

collapse evaluated at s2 =
r4
0
−r4

r4
0
+1

, which is the speed at the same r in the large n problem. Let

us define F (r, r0) = Ên=1

(

r, s =
√

r4
0
−r4

r4
0
+1

)

. We compare this with Ên=1(r, s) for s appropriate

for the n = 1 problem, which is just
1+2r4

0√
1+r4

0

≡ G(r0) by conservation of energy. We now use

the fact, established above, that ∂Ên=1

∂s
is positive for any real r. This means that we can

show s|n=1 <
√

r4
0
−r4

r4
0
+1

by showing that F (r, r0) > G(r0). A short calculation gives

F (r, r0) − G(r0) =
r4
0

√

1 + r4
0(1 + r4)

(r4
0 − r4). (4.8)

It is clear that we have the desired inequality, showing that, at each r, the speed s in the

n = 1 problem is smaller than the speed in the n = ∞ system. Hence the time of collapse

is larger at n = 1. In the n = 2 case, we find that an exactly equivalent treatment proves

again that the collapse is slower than at large n. However, this trend is not a general feature

for all n. In the leading large-N limit, the time of collapse is given by the formula

T

L
=

∫

dr

√

1 + r4
0

√

r4
0 − r4

=
K( 1√

2
)

√
2

√
R4 + L4

R
(4.9)

For fixed ℓs, L decreases with decreasing N and as a result T decreases. When we include

the first 1/N correction the time of collapse is [5]

T

L
=

∫

dr

[

√

1 + r4
0

√

r4
0 − r4

+
r8
0

6N2(1 + r4
0)

3/2
√

r4
0 − r4

− r4
0(1 + 3(1 + r4

0))

6N2(1 + r4)
√

1 + r4
0

√

r4
0 − r4

]

.

(4.10)

By performing numerical integration of the above for several values of the parameter r0 and

some large but finite values of N , we see that the time of collapse is smaller for the 1/N

corrected case. This means that, in the region of large N the time of collapse decreases as

N decreases, with both the leading large N formula and the 1/N correction being consistent

with this trend. However, as we saw above the time of collapse at n = 1 and n = 2 are

larger than at n = ∞. This means that there are one or more turning points in the time of

collapse as a function of n.

The deceleration effect that arises in the comparison of n = 1 and n = 2 with large

n may have applications in cosmology. Deceleration mechanisms coming from DBI actions

have been studied in the context of bulk causality in AdS/CFT [21, 22] and applied in the

problem of satisfying slow roll conditions in stringy inflation [23]. Here we see that the finite

n effects result in a further deceleration in the region of small n.
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We turn to the proper acceleration which is important in checking the validity of our

action. Since the DBI action is valid when higher derivatives are small, it is natural to

demand that the proper acceleration, should be small (see for example [21]). The condition

is γ3ℓs∂
2
t Rphys ≪ 1. In terms of the dimensionless variables it is γ3(∂2

τ r̂) ≪
√

N . If we want

a trajectory with initial radius r0 such that the proper acceleration always remains less than

one through the collapse, then there is an upper bound on r0. This upper bound goes to

infinity as N → ∞. We are already constrained by the condition that the spatial derivatives

are small, to lie within the small or large r region, for finite-N . For small r0 we are in the

matrix theory limit and things are well behaved. For large r0 and r-large, the acceleration

is under control, α ∼ 1/r and the velocity will be close to zero. Interestingly, there will also

be a valid large r0, relativistic regime. Consider for example the n = 1 case. The proper

acceleration can be written as

α = − 2r3

1 + r4

−3 + 2s2 + r4(s2 − 2)√
1 − s2(r4(s2 − 4) − 3)

. (4.11)

For s ∼ 1 and small r, this becomes

α ≃ − 2r3

3
√

1 − s2
(4.12)

and
√

1 − s2 can be found from the energy at the same limits, in which (3.6) becomes

√
1 − s2 ≃ 1

(2r2
0)

1/3
. (4.13)

Therefore, we can identify a region where the proper acceleration is small by restricting it

to be of order 1/r0 for example

α ≃ 2r3

3
(2r2

0)
1/3 ∼ 1

r0
. (4.14)

This means that in regions where r ∼ r
−5/9
0 , we will have a relativistic limit described by the

DBI, where stringy corrections can be neglected. This result also holds in the large-N limit.

It will be interesting to develop a perturbative approximation which systematically includes

stringy effects away from this region.

Another quantity of interest is the effective mass squared E2 − p2 , where p = ∂L/∂s is

the radial conjugate momentum. It becomes negative for sufficiently large velocities. This

includes the above regime of relativistic speeds and small radii. It is straightforward to see

that if our collapsing configuration is considered as a source for spacetime gravity, this implies

a violation of the dominant energy condition. In the context of the BFSS matrix model, it

has been shown that for an action containing a background spacetime GIJ = ηIJ +hIJ , in the

12



linearised approximation, linear couplings in the fluctuation h0I correspond to momentum in

the XI direction [24]. The same argument can be developed here for the non-Abelian DBI.

We couple a small fluctuation h0r, which in classical geometry we can write as h0i = h0rxi

for the unit sphere. We replace xi by αi/n. The action for D0-branes [1, 2] is generalised

from (2.1) by replacing Ṙ in λ∂tΦi = λ(
˙̂
R)αi = Ṙ

n
αi with (Ṙ + h0r). It is then clear that

the variation with respect to Ṙ, which gives p, is the same as the variation with respect to

h0r, which gives T 0r. Hence, the dominant energy condition will be violated, since E < |p| is

equivalent to T 00 < T 0r. The violation of this condition by stringy D-brane matter can have

profound consequences. For a discussion of possible consequences in cosmology see [25]. In

this context, it is noteworthy that the violation can occur near a region of zero radius, which

could be relevant to a near-big-bang region in a braneworld scenario.

4.3 Distance to blow-up in D1 ⊥ D3

Comparisons between the finite and large N results can be made in the spatial case using

the conserved pressure. The arguments are similar to what we used for the time of collapse

using the energy functions. Consider the case n = 1, and let P̂ = P/N . First calculate the

derivative of the pressure -
∂P̂

∂s
=

s(4r4 + r4s2 + 3)√
1 + r4(1 − s2)5/2

. (4.15)

This is clearly always positive. Now evaluate

P̂

(

r, s =

√

r4 − r4
0

√

1 + r4
0

)

= −(1 + r4
0)

1/2

1 + r4
(1 + r4

0 + r4). (4.16)

This should be compared with P̂ (r, s), evaluated for the value of s which solves the n = 1

equation of motion, which by conservation of pressure is − (1+2r4
0
)√

1+r4
0

.

Take the difference to find

P̂

(

r, s =

√

r4 − r4
0

√

1 + r4
0

)

+
(1 + 2r4

0)
√

1 + r4
0

=
r4
0(r

4 − r4
0)

√

1 + r4
0(1 + r4)

. (4.17)

Thus at fixed r0 and r, P̂n=1, when evaluated for the value of s which solves the large

n problem, is larger than when it is evaluated for the value of s which solves the n = ∞
problem. Since P̂ increases monotonically with s for fixed r, this shows that for fixed r0, and

any r, s is always larger in the large N problem. Since Σ =
∫

dr/s, this means the distance

to blow-up is smaller for n = ∞. Hence for fixed r0, the distance to blow-up is larger at

n = 1.
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5 Towards a generalisation to higher even-dimensional fuzzy-spheres

For generalisations to higher dimensional brane systems, and to higher dimensional fuzzy

spheres [9, 11, 12, 13], it is of interest to derive an extension of the expressions for the

symmetrised traces given above. In the general case, we define N(k, n) to be the dimension

of the irreducible representation of SO(2k+1) with Dynkin label (n
2
, n

2
, . . . , n

2
) which contains

k entries. We then take C(m, k, n) to be the action of the symmetrised trace on m pairs of

matrices Xi, where i = 1, . . . , 2k + 1

C(m, k, n) =
1

N(k, n)
STr

(

XiXi)
m. (5.1)

Finding an expression for C(m, k, n) is non-trivial. Investigations based upon intuition from

the ADHM construction lead us to conjecture that for n odd

C(m, k, n) =
2k
∏k

i1=1(2m − 1 + 2i1)

(k − 1)!
∏2k−1

i2=1 (n + i2)

n+1

2
∑

i3=1

[

k−1
∏

i4=1

((n

2
+ i4

)2

−
(

i3 −
1

2

)2)

(2i3 − 1)2m
]

, (5.2)

while for n even1

C(m, k, n) =
2k
∏k

i1=1(2m − 1 + 2i1)

(k − 1)!
∏2k−1

i2=1 (n + i2)

n
2
∑

i3=1

[

k−1
∏

i4=1

((n

2
+ i4

)2

− i23

)

(2i3)
2m
]

. (5.3)

We give the arguments leading to the expressions above in Appendix A.

For higher even spheres there will be extra complications at finite-n. Consider the case of

the fuzzy S4 for concreteness. The evaluation of the higher dimensional determinant in the

corresponding non-Abelian brane action will give expressions with higher products of ∂tΦi

and Φij ≡ [Φi, Φj ]

S = −T0

∫

dt STr

{

1 + λ2(∂tΦi)
2 + 2λ2ΦijΦji + 2λ4(ΦijΦji)

2 − 4λ4ΦijΦjkΦklΦli +

+ 2λ4(∂tΦi)
2ΦjkΦkj − 4λ4∂tΦiΦijΦjk∂tΦk +

λ6

4
(ǫijklm∂tΦiΦjkΦlm)2

}1/2

. (5.4)

The ansätz for the transverse scalars will still be

Φi = R̂(t)Xi ,

where now i = 1, . . . , 5 and the X i’s are given by the action of SO(5) gamma matrices on the

totally symmetric n-fold tensor product of the basic spinor. After expanding the square root,

1For m = 0 the value STr(XiXi)
0 = 1 is once again imposed.
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the symmetrisation procedure should take place over all the Xi’s and [Xi, Xj]’s. However, the

commutators of commutators [[X, X], [X, X]] will give a nontrivial contribution, as opposed

to what happens in the large-n limit where they are sub-leading and are taken to be zero.

Therefore, in order to uncover the full answer for the finite-n fuzzy S4 it is not enough to just

know the result of STr(XiXi)
m - we need to know the full STr ((X X)m1([X, X][X, X]))m2

with all possible contractions among the above. It would be clearly interesting to have the

full answer for the fuzzy S4. A similar story will apply for the higher even-dimensional fuzzy

spheres.

Note, however, that for R̂ = 0 in (5.4) all the commutator terms Φij will vanish, since

they scale like R̂2. This reduces the symmetrisation procedure to the one involving XiXi

and yields only one sum for the energy. The same will hold for any even-dimensional S2k,

resulting in the following general expression

En,k(0, s) = −STr

∞
∑

m=0

(−1)ms2m(2m − 1)(XiXi)
m

(

1/2

m

)

= −N(k, n)

∞
∑

m=0

(−1)ms2m(2m − 1)C(m, k, n)

(

1/2

m

)

. (5.5)

Using (5.2), notice that in the odd n case

C(m, k, n) =

2k−1
∏

i2=1

(1 + i2)

(n + i2)
C(m, k, 1)

n+1

2
∑

i3

fodd(i3, k, n)

fodd(1, k, 1)
(2i3 − 1)2m . (5.6)

The factor fodd is

fodd(i3, k, n) =
k−1
∏

i4=1

((n

2
+ i4

)2

−
(

i3 −
1

2

)2)

. (5.7)

Inserting this form for C(m, k, n) in terms of C(m, k, 1) we see that

En,k(0, s) = N(n, k)

2k−1
∏

i2=1

(1 + i2)

(n + i2)

n+1

2
∑

i3=1

fodd(i3, k, n)

fodd(1, k, 1)
Ên=1,k(0, s(2i3 − 1)) (5.8)

Similarly we derive, in the even n case, that

En,k(0, s) = N(n, k)
2k−1
∏

i2=1

(2 + i2)

(n + i2)

n
2
∑

i3=1

feven(i3, k, n)

feven(1, k, 2)
Ên=2,k(0, s(i3)) (5.9)

where

feven(i3, k, n) =

k−1
∏

i4=1

((n

2
+ i4

)2

− i23

)

(5.10)
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and Ê is the energy density, i.e. the energy divided a factor of N(n, k).

It is also possible to write C(m, k, 2) in terms of C(m, k, 1)

C(m, k, 2) = 22mC(m, k, 1)

k−1
∏

i4=1

i4(i4 + 2)

i4(i4 + 1)

2k−1
∏

i2=1

(i2 + 1)

(i2 + 2)

= 22mC(m, k, 1)
feven(1, k, 2)

fodd(1, k, 1)

2k−1
∏

i2=1

(i2 + 1)

(i2 + 2)
, (5.11)

which is valid for all values of m 6= 0.

It turns out to be possible to give explicit forms for the energy for the n = 1 and n = 2

case. Since the definition of the physical radius in section 2 is also valid for higher dimensional

fuzzy spheres, we can express the results in terms of the rescaled variables r̂ and ŝ

Ên=1,k(0, ŝ) =
1

(1 − ŝ2)
2k+1

2

Ên=2,k(0, ŝ) =
1

(1 − ŝ2)
2k+1

2

(k + 1)

(2k + 1)
. (5.12)

When plugged into (5.8), (5.9) the above results provide a closed form for the energy at

r̂ = 0, for any n and any k.

6 Summary and Outlook

We have given a detailed study of the finite N effects for the time dependent D0−D2 fuzzy

sphere system and the related D1 ⊥ D3 funnel. This involved calculating symmetrised

traces of SO(3) generators. The formulae have a surprising simplicity.

The energy function E(r, s) in the large N limit looks like a relativistic particle with

position dependent mass. This relativistic nature is modified at finite N . Nevertheless our

results are consistent with a fixed relativistic upper speed limit. This is guaranteed by an

appropriate definition of the physical radius which relies on the properties of symmetrised

traces of large numbers of generators. We showed that the exotic bounces found in the large

N expansion in [5] do not occur. It was previously clear that these exotic bounces happened

near the regime where the 1/N expansion was breaking down. The presence or absence of

these could only be settled by a finite N treatment, which we have provided in this paper.

We also compared the time of collapse of the finite N system with that of the large N system

and found a finite N deceleration effect for the first small values of N . The modified E(r, s)

relation allows us to define an effective squared mass which depends on both r, s. For certain

regions in (r, s) space, it can be negative. When the D0 − D2 system is viewed as a source
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for gravity, a negative sign of this effective mass squared indicates that the brane acts as a

gravitational source which violates the dominant energy condition.

We extended some of our discussion to the case of higher even fuzzy spheres with SO(2k+

1) symmetry. The results for symmetrised traces that we obtain can be used in a proposed

calculation of charges in the D1 ⊥ D(2k +1) system. They also provide further illustrations

of how the correct definition of physical radius using symmetrised traces of large powers of

Lie algebra generators gives consistency with a constant speed of light. A more complete

discussion of the finite N effects for the higher fuzzy spheres could start from these results.

Generalisations of the finite N considerations to fuzzy spheres in more general backgrounds

[26] will be interesting to consider, with a view to possible applications in cosmology.
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A General formula for the symmetrised trace

As in section 5, we define N(k, n) to be the dimension of the irreducible representation of

SO(2k+1) with Dynkin label (n
2
, n

2
, . . . , n

2
). These are the usual fuzzy sphere representations

[9, 10] (for example, for k=1 the Xi are the elements of the Lie algebra of SU(2) in the

irreducible representation with spin n
2
). Then

N(k, n) =
∏

1≤i<j≤k

n + 2k − (i + j) + 1

2k − (i + j) + 1

k
∏

l=1

n + 2k − 2l + 1

2k − 2l + 1
. (A.1)

The symmetrised trace is defined to be the normalised sum over permutations of the

matrices

STr
(

Xi1 . . .Xip) =
1

p!

∑

σ∈Sp

Tr(Xσ(1) . . .Xσ(p)) . (A.2)

We have given earlier a conjecture for the symmetrised trace of m powers of the quadratic

Casimir XiXi = c In×n, where c = n(n + 2k). This is, for all m, k and n even

1

N(k, n)
STr

(

XiXi)
m =

2k
∏k

i1=1(2m − 1 + 2i1)

(k − 1)!
∏2k−1

i2=1 (n + i2)

n
2
∑

i3=1

[

k−1
∏

i4=1

((n

2
+ i4

)2

− i23

)

(2i3)
2m
]

, (A.3)

where for k = 1 the product over i4 = 1, . . . , k − 1 is just defined to be equal to 1. Similarly

for all m, k and for n odd we have proposed that

1

N(k, n)
STr

(

XiXi)
m =

2k
∏k

i1=1(2m − 1 + 2i1)

(k − 1)!
∏2k−1

i2=1 (n + i2)

n+1

2
∑

i3=1

[

k−1
∏

i4=1

((n

2
+i4

)2

−
(

i3−
1

2

)2)

(2i3−1)2m
]

.

(A.4)

The argument leading to these conjectures follows. Firstly, it is possible to view the fuzzy

sphere matrices Xi as the transverse coordinates of the world-volume theory of a stack of D1-

branes expanding into a stack of D(2k+1)-branes [6, 27, 28]. There is also a dual realisation

of this system in which the D1-branes appear as a monopole in the world-volume theory of

the D(2k +1)-branes. The ADHM construction can be used to construct the monopole dual

to the fuzzy sphere transverse coordinates. If one takes the N(k, n)-dimensional fuzzy sphere

matrices representing a stack of N(k, n) D1-branes as ADHM data for a monopole, then one

naturally constructs a monopole defined on a stack of N(k− 1, n+1) D(2k +1)-branes. We

have also done the calculation which shows that the charge for the monopole just constructed

gives precisely N(k, n), which provides a consistency check (this calculation extends some

results in [29] and will appear in [30]).

It is also possible to calculate the number of D(2k+1) branes from the fuzzy sphere ansatz

for the transverse coordinates, by looking at the RR coupling on the D-string worldvolume.
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In this case one does not get N(k − 1, n + 1) as one would expect, but instead the quantity

N(k − 1, n + 1)

∏2k−1
i=1 (n + i)

ck− 1

2

, (A.5)

where c = n(n + 2k). This number of branes does agree with N(k − 1, n + 1) for the first

two orders in the large n expansion

Number of D(2k + 1)-branes = N(k − 1, n + 1)
(

1 + O
( 1

n2

))

. (A.6)

Now consider this RR charge calculation more carefully. First take the k=1 case. Based

on the ADHM construction we expect the number of D3-branes to be N(0, n + 1) = 1.

However, equation (A.5) suggests that the charge calculation gives for k = 1 the answer

n + 1

c
1

2

. (A.7)

Suppose that the numerator in the above is correct, but that the denominator is correct only

at large n and that it receives corrections at lower order to make the number of D3-branes

exactly one. Then these corrections need to satisfy

1 = (n + 1)(c−
1

2 + x1c
− 3

2 + x2c
− 5

2 + ....). (A.8)

It is easy to show that we need x1 = −1
2

and x2 = 3
8
, by Taylor expanding and using that

c = n(n + 2) for k = 1. Therefore, we would like to have a group theoretic justification for

the series

c−
1

2 − 1

2
c−

3

2 +
3

8
c−

5

2 + ... . (A.9)

There exists a formula for the first three terms in the large n expansion of the k = 1

symmetrised trace operator [5], namely

1

N(1, n)
STr(XiXi)

m = cm− 2

3
m(m−1)cm−1+

2

45
m(m−1)(m−2)(7m−1)cm−2 +... . (A.10)

Now, if we make the choice m=−1
2

in (A.10) we get precisely (A.9). However, this suggests

that if this choice is correct, then we should have an all orders prediction for the action of

the symmetrised trace operator. Thus, for k=1 we predict that

1

N(1, n)
STr(XiXi)

m
∣

∣

∣

m=− 1

2

≃ 1

(n + 1)
, (A.11)

where for future reference we consider the left hand side to be equal to the symmetrised

trace in a large-n series expansion, as appeared in [5].

Checking the conjecture (A.11) beyond the first three terms in a straightforward fashion,

by techniques similar to those employed in [5], proves difficult. This involves either adding
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up a large number of chord diagrams, or complicated combinatorics if one uses the highest

weight method.

An alternative approach involves first writing down the conjecture based on brane count-

ing for general k, since the methods of [5] turn out to generalise from the k = 1 to the general

k case. The conjecture for general k, based on the brane counting, follow immediately from

(A.5)

1

N(k, n)
STr(XiXi)

m
∣

∣

∣

m=−k+ 1

2

≃
2k−1
∏

i=1

1

(n + i)
. (A.12)

Note that the right hand side of this equation appears in the factor outside the sum in (A.3)

and (A.4). Notice also that the above expression concerns the large n expansion of the

symmetrised trace considered at m = −k + 1
2
.

One can repeat the k = 1 calculation of [5] for general k, to check the first three terms

of this conjecture. A sketch of this calculation follows before displaying the full results.

First we calculate 1
N(k,n)

STr(XiXi)
m for m = 2, 3, 4. Then we find the first three terms in

the symmetrised trace, large n expansion using these results. Finally we can check that

the conjecture (A.12) is true for the first three terms in the symmetrised trace large n

expansion, for general k as well as for k = 1. We then proceed to calculate the fourth

term in the expansion, for general k. To do this we need to calculate 1
N(k,n)

STr(XiXi)
m for

m = 5, 6. We then show that the fourth term in the large n expansion of the symmetrised

trace agrees precisely with (A.12).

In the following, we use the notation of [5], with each trace of a string of 2m Xi matrices

arising here being represented by a chord diagram with m chords. This provides a convenient

way to represent equivalent strings of matrices.

For the calculation of STr(XiXi)
2 there are three different strings of the four Xi matrices

and two different chord diagrams. Two of the three strings correspond to the same chord

diagram. In the following, the first column contains a fraction which is the multiplicity of

the chord diagram in the list of strings divided by the total number of strings. The second

column contains a picture of the chord diagram preceded by an example of a string in the

equivalence class defined by this chord diagram. The evaluation of the chord diagram is the

final entry.

2
3

1122 = &%
'$r

r
r

r

= c2,

1
3

1212 = &%
'$r

r rr = (c − 4k)&%
'$r

r = c(c − 4k) .
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Using this, one finds immediately that

1

N(k, n)
STr(XiXi)

2 = c2 − 4

3
kc . (A.13)

For m = 3 there are 15 different strings of Xi matrices and five different chord diagrams,

which evaluate as follows

2
15

112233 = &%
'$rr r

r

r r

= c3,

6
15

112323 = &%
'$r

r
r

r

r

r

= c&%
'$r

r rr = c2(c − 4k),

3
15

112332 = &%
'$r

r
r

r

r

r

= c3,

3
15

121323 = &%
'$rr r

r

r

r

= (c − 4k)&%
'$rr r

r

= c(c − 4k)2,

1
15

123123 = &%
'$r

r
r

r

"
"

"" r

r

b
b

bb
= c3 − 12kc2 + 16k(k + 1)c .

Thus we find that

1

N(k, n)
STr(XiXi)

3 = c3 − 4kc2 +
16

15
k(4k + 1)c . (A.14)

For m=4 there are 105 different strings and 18 different chord diagrams. We omit the details

for simplicity. The final result is that

1

N(k, n)
STr(XiXi)

4 = c4 − 8kc3 +
16

5
k(7k + 2)c2 − 64

105
k(34k2 + 24k + 5)c. (A.15)

For m=5 there are 945 different strings of Xi matrices, and 105 different chord diagrams2.

The result is

1

N(k, n)
STr(XiXi)

5 = c5 − 40

3
kc4 +

16

3
(13k + 4)kc3 − 64

63
(158k2 + 126k + 31)kc2

+
256

945
(496k3 + 672k2 + 344k + 63)kc. (A.16)

2We acknowledge the assistance of Simon Nickerson, for writing a computer programme used here. Maple

files for these calculations are available from the authors.
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For m=6 there are 10395 different strings of Xi matrices, and 902 different chord diagrams,

and we find that

1

N(k, n)
STr(XiXi)

6 = c6 − 20kc5 +
16

3
(31k + 10)kc4 − 64

63
(677k2 + 582k + 157)kc3

+
256

315
(1726k3 + 2616k2 + 1541k + 336)kc2

− 1024

10395
(11056k4 + 24256k3 + 22046k2 + 9476k + 1575)kc .

(A.17)

Now we calculate the first four terms in the large n expansion of STr(XiXi)
m. Suppose

that the coefficient of cm−l term in STr(XiXi)
m is a polynomial in m of order 2l. Then we

have the following ansätz: The known factors of these polynomials come from the fact that

the series has to terminate so that there are never negative powers of c for m = 1, 2, 3, ...

Then

1

N(k, n)
STr(XiXi)

m = cm + y1(k)m(m − 1)cm−1

+
(

y2(k)m + y3(k)
)

m(m − 1)(m − 2)cm−2

+
(

y4(k)m2 + y5(k)m + y6(k)
)

m(m − 1)(m − 2)(m − 3)cm−3

+O(cm−4) .

We now find the unknown functions y1(k), y2(k) . . . y6(k) using the results of STr(XiXi)
m

for m = 2, 3, 4, 5, 6 calculated above. We find that

y1(k) = −2

3
k, y2(k) =

2

45
(5k + 2)k,

y3(k) =
2

45
(k − 2)k, y4(k) =

1

2835
(−140k2 − 168k − 64)k,

y5(k) =
1

2835
(−84k2 + 216k + 192)k, y6(k) =

1

2835
(128k2 + 96k − 104)k .

(A.18)

Now we are able to provide a check of the conjecture (A.12). First we express the right-

hand side of (A.12) as a function of c as

2k−1
∏

l=1

1

n + l
=

1√
(k2 + c)

k−1
∏

l=1

1

c + 2kl − l2
= c−k+ 1

2

∞
∑

j=0

bj

cj
, (A.19)
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where

b1 = −2

3
k
(

k − 1

2

)(

k +
1

2

)

,

b2 =
1

45
(10k2 − 3k + 2)k

(

k − 1

2

)(

k +
1

2

)(

k +
3

2

)

,

b3 =
1

2835
(−24 + 34k − 61k2 + 56k3 − 140k4) ×

k
(

k − 1

2

)(

k +
1

2

)(

k +
3

2

)(

k +
5

2

)

. (A.20)

Now consider the left-hand side of (A.12) involving the large n expansion of STr(XiXi)
m,

which we calculated above, but now we set m = −k + 1
2
. Expanding in inverse powers of c,

we find that this becomes

1

N(k, n)
STr(XiXi)

m
∣

∣

∣

m=−k+1/2
= c−k+ 1

2

∞
∑

j=0

bj

cj
,

with precisely the coefficients bi given in (A.20). Given the extensive and non-trivial calcu-

lations required to obtain these results, we believe that there is strong evidence for the truth

of (A.12).

For k = 1 the guess of the exact answer for n even is

1

N(1, n)
STr(XiXi)

m =
2(2m + 1)

n + 1

n
2
∑

i=1

(2i)2m . (A.21)

It is easy to show that (A.21) agrees with the first four orders in the large n expansion (A.18)

for k = 1. If we set m = −1
2

in this we get zero, because of the (2m + 1) factor. This might

appear to contradict (A.11), but it is easy to show, using a large n expansion, that if (A.21)

is true then (A.11) holds to all orders. To calculate the large n expansion of this sum we can

use the Euler-Maclaurin formula. This approximates the sum by an integral, plus an infinite

series of corrections involving the Bernoulli numbers B2p

n
∑

i=1

f(i) ≃
∫ n+1

0

f(x)dx +
1

2
[f(n + 1) − f(0)]

+

∞
∑

p=1

B2p

(2p)!
[f (2p−1)(n + 1) − f (2p−1)(0)] . (A.22)

We see from this calculation that for k = 1 the value m = −1
2

is very special. It is the only

value of m for which the higher order terms in the Euler-MacLaurin large n approximation

of the sum in (A.21) are zero.
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B Finite n results on symmetrised traces from the highest weight

method

Results on finite n symmetrised traces can be obtained by generalising the highest weight

method of [5]. For the SO(3) representations used in fuzzy 2-spheres we have

1

2
STrJ=1/2(αiαi)

m = (2m + 1) , (B.1)

where the 1/2 comes from dividing with the dimension of the spin-1/2 representation. A

similar factor will appear in all of the results below. The above result was derived in [5]. For

the spin one case, we will obtain

1

3
STrJ=1(αiαi)

m =
22m+1(2m + 1)

3
. (B.2)

These results can be generalised to representations of SO(2l + 1) relevant for higher fuzzy

spheres. The construction of higher dimensional fuzzy spheres uses irreducible representa-

tions of highest weight (n
2
, · · · , n

2
), as we have noted. For the minimal representation with

n = 1 we have
1

Dn=1
STrn=1(XiXi) =

(2l + 2m − 1)!!

(2m − 1)!!(2l − 1)!!
. (B.3)

Notice the interesting symmetry under the exchange of l and m. For the next-to-minimal

irreducible representation with n = 2 we obtain:

1

Dn=2
STrn=2(XiXi) = 22m(l + 1)

(2l + 2m − 1)!!

(2m − 1)!!(2l + 1)!!
. (B.4)

This is a generalisation of the spin 1 case to higher orthogonal groups. It agrees with the

formulae in section A of the appendix, with l → k.

B.1 Review of spin half for SO(3)

We will begin by recalling some facts about the derivation of the n = 1 case in [5]. The

commutation relations can be expressed in terms of α3, α±

α± =
1√
2
(α1 ± iα2),

[α3, α±] = 2α±,

[α+, α−] = 2α3,

c = α+α− + α−α+ + α2
3.

(B.5)
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With these normalisations, the eigenvalues of α3 in the spin half representation are ±1 and

α+α− is 1 on the highest weight state.

It is useful to define a quantity C̃(p, q) which depends on two natural numbers p, q and

counts the number of ways of separating p identical objects into q parts

C̃(p, q) =
(p + q − 1)!

p!(q − 1)!
. (B.6)

We begin by a review of the spin half case, establishing a counting which will be used again

in more complicated cases below. This relies on a sum

2k
2n−2k
∑

î2k

· · ·
î3
∑

î2=0

î2
∑

î1=0

(−1)î1+î2+···̂i2k = 2k n!

(n − k)!k!
.

Recall that this sum was obtained by evaluating a sequence of generators of SO(3) consisting

of k pairs α−α+ and with powers of α3 between these pairs -

α
2J2k+1

3 α+α2Jk

3 α− · · ·α−αJ3

3 α+αJ2

3 α−αJ1

3 . (B.7)

We can move the powers of α3 to the left to get factors (α3 − 2)J2+J4+···J2k . Moving the α3

with powers J1, J3.. gives αJ1+J3+···
3 . The k powers of α−α+ gives 2k. The above sum can be

rewritten

2k

2m−2k
∑

J2k+1=0

· · ·
2m−2k−J3+..J2k+1

∑

J2=0

2m−2k−J2...J2k+1
∑

J1=0

(−1)J2+J4···J2k = 2k n!

(n − k)!k!
. (B.8)

This includes a sum over Je = J2 + J4 + . . . + J2k. The summand does not depend on

the individual J2, J4, . . . only on the sum Je which ranges from 0 to 2m − 2k. The sum

over J2, J4, . . . is the combinatoric factor, introduced above, which is the number of ways of

splitting Je identical objects into k parts, i.e. C̃(Je, k). The remaining 2m− 2k − Je powers

of α3 are distributed in k + 1 slots in C̃(2m− 2k− Je, k + 1) ways. Hence the sum (B.8) can

be written more simply as

2k
2m−2k
∑

Je=0

(−1)JeC̃(Je, k)C̃(2m − 2k − Je, k + 1) = 2k m!

(m − k)!k!
. (B.9)

Then there is a sum over k from 0 to m, with weight

C(k, m) =
2kk!(2m − 2k)!m!

(m − k)!(2m)!
(B.10)

which gives the final result 2m+1 [5]. Similar sums arise in the proofs below. In some cases,

closed formulae for the sums are obtained experimentally.
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B.2 Derivation of symmetrised trace for minimal SO(2l + 1) representation

The Casimir of interest here is

XµXµ = X2
2l+1 +

l
∑

i=1

(

X
(i)
− X

(i)
+ + X

(i)
+ X

(i)
−

)

. (B.11)

The patterns are similar to those above, with α3 replaced by X2l+1, and noting that here

there are l “colours” of α± which are X
(l)
± . All the states in the fundamental spinor are

obtained by acting on a vacuum which is annihilated by l species of fermions. Generally we

might expect patterns

...X i1
2l+1X

(j1)
− X i2

2l+1X
(j2)
+ ... (B.12)

In evaluating these, we can commute all the X2l+1 to the left. This results in shifts which

do not depend on the value of j. It is easy to see that whenever X
(1)
+ is followed by X

(1)
+

we get zero because of the fermionic construction of the gamma matrices. X
(1)
+ cannot also

be followed by X
(2)
+ because X

(1)
+ X

(2)
+ + X

(2)
+ X

(1)
+ = 0. So the pairs have to take the form

X
(j)
− X

(j)
+ for fixed j. The sum we have to evaluate is

m
∑

k=0

2m−2k
∑

Je=0

(−1)JeC̃(Je, k)C̃(2m − 2k − Je, k)C̃(k, l)2kC(k, m)

=
m
∑

k=0

(

m

k

)

2kC(k, m)C̃(k, l) (B.13)

=
(2l + 2m − 1)!!

(2m − 1)!!(2l − 1)!!
.

The factors C̃(Je, k) and C̃(2m − 2k − Je, k) have the same origin as in the spin half case.

The factor (B.10) is now generalised to an l-colour version

C(k1, k2...kl; m) = 2k (2m − 2k)!

(2m)!

m!

(m − k)!
k1!k2!...kl! (B.14)

This has to be summed over k1, .., kl. For fixed k = k1 + · · ·+ kl we have

∑

k1..kl

C(k1..kl, m)
k!

k1!..kl!
=
∑

k1..kl

C(k, m) = C(k, m)C̃(k, l) . (B.15)

The combinatoric factor k!
k1!..kl!

in the second line above comes from the different ways of

distributing the k1..kl pairs of (−+) operators in the k positions along the line of operators.

The subsequent sum amounts to calculating the number of ways of separating k objects into

l parts which is given by C̃(k, l). The C(k, m) is familiar from (B.10). This sum can be done

for various values of k, m and gives agreement with (B.3).
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B.3 Derivation of spin one symmetrised trace for SO(3)

For the spin one case more patterns will arise. After an α− acts on the highest weight, we

get a state with α3 = 0 so that we have, for any positive r

αr
3α−|J = 1, α3 = 2 >= 0 , ∀ r > 0 . (B.16)

Hence any α− can be followed immediately by α+. These neutral pairs of (α+α−) can be

separated by powers of α3. Alternatively an α− can be followed immediately by α−. The

effect of α2
− is to change the highest weight state to a lowest weight state. In describing the

patterns we have written the “vacuum changing operator” on the second line, with the first

line containing only neutral pairs separated by α3’s. Let there be J1 neutral pairs in this

first line and L1 powers of α3 distributed between them. After the change of vacuum, we

can have a sequence of (α−α+) separated by powers of α3. Let there be a total of J2 neutral

pairs and L2 α3’s in the second line. At the beginning of the third line we have another

vacuum changing operator α2
+ which takes us back to the highest weight state. In the third

line, we have J3 neutral pairs and L3 powers of α3. The equation below describes a general

pattern with p pairs of vacuum changing operators. The total number of neutral pairs is

2p + J where J = J1 + J2 + · · · + J2p+1. The general pattern of operators acting on the

vacuum is

# (α+α−) # (α+α−) # · · ·# (α+α−) # |J = 1, α3 = 2 >

# (α−α+) # (α−α+) # · · ·# (α−α+) #α2
−

# (α+α−) # (α+α−) # · · ·# (α+α−) # α2
+

...

# (α−α+) # (α−α+) # · · · # (α−α+) #α2
−

# (α+α−) # (α+α−) # · · ·# (α+α−)# α2
+ , (B.17)

where in the above the first line of operators acts on the state |J = 1, α3 = 2 > first,

then the second line acts, and so on. The symbols # represent powers of α3. We define

Je = J2 + J4 + · · ·J2p which is the total number of (−+) pairs on the even lines above.

There is a combinatoric factor C̃(Je, p) for distributing Je among the p entries, and a similar

C̃(J − Je, p + 1) for the odd lines. The Le = L2 + L4 + · · · + L2p copies of α3 can sit in

(J2 + 1) + (J4 + 1) + · · · + (J2p + 1) positions which gives a factor of C̃(Le, Je + p). The

L1 +L3 + · · ·+L2p+1 can sit in (J1 +1)+(J3+1)+ · · ·+(J2p+1 +1) = J−Je +p+1 positions,

giving a factor C̃(2m− 2J − 4p −Le, J − Je + p + 1). There is finally a factor C(2p + J, m)

defined in (B.10) which arises from the number of different ways the permutations of 2m
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indices can be specialised to yield a fixed pattern of α+, α−, α3

[m/2]
∑

p=0

m−2p
∑

J=0

J
∑

Je=0

2m−4p−2J
∑

Le=0

C̃(Je, p) C̃(J − Je, p + 1) (−1)Le C̃(Le, Je + p) ×

C̃(2m − 2J − 4p − Le, J − Je + p + 1) ×
22m−2J−4p Q(1, 1)J−Je Q(2, 1)Je Q(2, 2)p C(2p + J, m) .

By doing the sums (using Maple for example) for various values of m we find 22m+1(2m+1)
3

.

The factors Q(i, j), denoted in [5] by N(i, j), arise from evaluating the α−, α+ on the highest

weight.

B.4 Derivation of next-to-minimal representation for SO(2l + 1)

The n = 2, general l patterns are again similar to the n = 2, l = 1 case except that the

α−, α+ are replaced by coloured objects of l colours, i.e. the X
(j)
± . We also have the simple

replacement of α3 by X2l+1.

We define linear combinations of the gamma matrices which are simply related to a set

of l fermionic oscillators: Γ
(i)
+ = 1√

2
(Γ2i−1 + iΓ2i) =

√
2a†

i and Γ
(i)
− = 1√

2
(Γ2i−1 − iΓ2i) =

√
2ai.

As usual Xi are expressed as operators acting on an n-fold tensor product, and

X
(i)
± =

∑

r

ρr(Γ
(i)
± ) . (B.18)

Some useful facts are

Xr
2l+1X+|0 > = 0, Xr

2l+1X
2
+|0 > = (−2)rX2

+|0 >,

Xr
2l+1X−X+|0 > = X−X+Xr

2l+1|0 > = (2)rX−X+|0 >,

X−X+Xr
2l+1X

2
+|0 > = 0, Y+X2

+ + X2
+Y+|0 > = 0,

X+Y+X+|0 > = 0, X−Y+X+|0 > = 0,

X+X−X2
+|0 > = Q(2, 1)X2

+|0 >, X+X−X+Y+|0 > = Q(2, 1)X+Y+|0 >,

X2
−X2

+|0 > = Q(2, 2)|0 >, Y−X−X+Y+|0 > = Q(2, 2)|0 > .

It is significant that the same Q(2, 1), Q(2, 2) factors appear in the different places in the

above equation. In the above X+ stands for any of the l X
(i)
+ ’s. Any equation containing

X± and Y± stands for any pair X
(i)
± and X

(j)
± for i, j distinct integers from 1 to l.

The general pattern is similar to (B.17) with the only difference that the (α−α+) on the

first line is replaced by any one (X
(i)
− X

(i)
+ ) for i = 1, . . . , l. The positive vacuum changing
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operators can be (X
(i)
+ X

(j)
+ ), where i, j can be identical or different. For every such choice the

allowed neutral pairs following them are X
(j)
+ X

(i)
− and the dual vacuum changing operator is

(X
(j)
− X

(i)
− ).

The summation we have to do is:

[m/2]
∑

p=0

m−2p
∑

J=0

2m−4p−2J
∑

Le=0

J
∑

Je=0

(

C(2p + J, m)C̃(2p + J, l)C̃(Je, p) C̃(J − Je, p + 1) ×

(−1)Le C̃(Le, Je + p)C̃(2m − 2J − 4p − Le, J − Je + p + 1) ×

22m−2J−4p Q(1, 1)J−Je Q(2, 1)Je Q(2, 2)p

)

.

The Q-factors can be easily evaluated on the highest weight and then inserted into the

above

Q(1, 1) = 4 , Q(2, 1) = 4 Q(2, 2) = 16 . (B.19)

By computing this for several values of m, l, we obtain (B.4). Note that both the l = 1 and

the general l case will yield the correct value for m = 0, which is 1.
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