12,400 research outputs found
Dilaton Black Holes Near the Horizon
Generic 4-d black holes with unbroken supersymmetry are shown
to tend to a Robinson-Bertotti type geometry with a linear dilaton and doubling
of unbroken supersymmetries near the horizon. Purely magnetic dilatonic black
holes, which have unbroken supersymmetry, behave near the horizon as a
2-d linear dilaton vacuum . This geometry is invariant under 8
supersymmetries, i.e. half of the original supersymmetries are unbroken.
The supersymmetric positivity bound, which requires the mass of the 4-d dilaton
black holes to be greater than or equal to the central charge, corresponds to
positivity of mass for a class of stringy 2-d black holes.Comment: 10 pages, SU-ITP-92-2
Critical Pebbling Numbers of Graphs
We define three new pebbling parameters of a connected graph , the -,
-, and -critical pebbling numbers. Together with the pebbling number, the
optimal pebbling number, the number of vertices and the diameter of the
graph, this yields 7 graph parameters. We determine the relationships between
these parameters. We investigate properties of the -critical pebbling
number, and distinguish between greedy graphs, thrifty graphs, and graphs for
which the -critical pebbling number is .Comment: 26 page
Statistical mechanics of Kerr-Newman dilaton black holes and the bootstrap condition
The Bekenstein-Hawking ``entropy'' of a Kerr-Newman dilaton black hole is
computed in a perturbative expansion in the charge-to-mass ratio. The most
probable configuration for a gas of such black holes is analyzed in the
microcanonical formalism and it is argued that it does not satisfy the
equipartition principle but a bootstrap condition. It is also suggested that
the present results are further support for an interpretation of black holes as
excitations of extended objects.Comment: RevTeX, 5 pages, 2 PS figures included (requires epsf), submitted to
Phys. Rev. Let
The Decay of Magnetic Fields in Kaluza-Klein Theory
Magnetic fields in five-dimensional Kaluza-Klein theory compactified on a
circle correspond to ``twisted'' identifications of five dimensional Minkowski
space. We show that a five dimensional generalisation of the Kerr solution can
be analytically continued to construct an instanton that gives rise to two
possible decay modes of a magnetic field. One decay mode is the generalisation
of the ``bubble decay" of the Kaluza-Klein vacuum described by Witten. The
other decay mode, rarer for weak fields, corresponds in four dimensions to the
creation of monopole-anti-monopole pairs. An instanton for the latter process
is already known and is given by the analytic continuation of the \KK\ Ernst
metric, which we show is identical to the five dimensional Kerr solution. We
use this fact to illuminate further properties of the decay process. It appears
that fundamental fermions can eliminate the bubble decay of the magnetic field,
while allowing the pair production of Kaluza-Klein monopoles.Comment: 25 pages, one figure. The discussion of fermions has been revised: We
show how fundamental fermions can eliminate the bubble-type instability but
still allow pair creation of monopole
Some Comments on Gravitational Entropy and the Inverse Mean Curvature Flow
The Geroch-Wald-Jang-Huisken-Ilmanen approach to the positive energy problem
to may be extended to give a negative lower bound for the mass of
asymptotically Anti-de-Sitter spacetimes containing horizons with exotic
topologies having ends or infinities of the form , in
terms of the cosmological constant. We also show how the method gives a lower
bound for for the mass of time-symmetric initial data sets for black holes with
vectors and scalars in terms of the mass, of the double extreme
black hole with the same charges. I also give a lower bound for the area of an
apparent horizon, and hence a lower bound for the entropy in terms of the same
function . This shows that the so-called attractor behaviour extends
beyond the static spherically symmetric case. and underscores the general
importance of the function . There are hints that higher dimensional
generalizations may involve the Yamabe conjectures.Comment: 13pp. late
Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics
We show that under variation of moduli fields the first law of black
hole thermodynamics becomes , where are the scalar charges. We also show
that the ADM mass is extremized at fixed , , when the moduli
fields take the fixed value which depend only on electric
and magnetic charges. It follows that the least mass of any black hole with
fixed conserved electric and magnetic charges is given by the mass of the
double-extreme black hole with these charges. Our work allows us to interpret
the previously established result that for all extreme black holes the moduli
fields at the horizon take a value depending only
on the electric and magnetic conserved charges: is such
that the scalar charges .Comment: 3 pages, no figures, more detailed versio
Topology, Entropy and Witten Index of Dilaton Black Holes
We have found that for extreme dilaton black holes an inner boundary must be
introduced in addition to the outer boundary to give an integer value to the
Euler number. The resulting manifolds have (if one identifies imaginary time)
topology and Euler number in contrast to
the non-extreme case with . The entropy of extreme dilaton black
holes is already known to be zero. We include a review of some recent ideas due
to Hawking on the Reissner-Nordstr\"om case. By regarding all extreme black
holes as having an inner boundary, we conclude that the entropy of {\sl all}
extreme black holes, including black holes, vanishes. We discuss the
relevance of this to the vanishing of quantum corrections and the idea that the
functional integral for extreme holes gives a Witten Index. We have studied
also the topology of ``moduli space'' of multi black holes. The quantum
mechanics on black hole moduli spaces is expected to be supersymmetric despite
the fact that they are not HyperK\"ahler since the corresponding geometry has
torsion unlike the BPS monopole case. Finally, we describe the possibility of
extreme black hole fission for states with an energy gap. The energy released,
as a proportion of the initial rest mass, during the decay of an
electro-magnetic black hole is 300 times greater than that released by the
fission of an nucleus.Comment: 51 pages, 4 figures, LaTeX. Considerably extended version. New
sections include discussion of the Witten index, topology of the moduli
space, black hole sigma model, and black hole fission with huge energy
releas
- …