868 research outputs found

    Radiation comb generation with extended Josephson junctions

    Full text link
    We propose the implementation of a Josephson radiation comb generator (JRCG) based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π\pi-jump to minimize the Josephson energy. Correspondingly a voltage pulse is generated at the extremes of the junction. Under periodic driving this allows us to produce a comb-like voltage pulses sequence. In the frequency domain it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 1010~pW at 5050~GHz for a driving frequency of 100100~MHz.Comment: 4+ pages, 4 color figure

    Properties of Mesoscopic Hybrid Superconducting Systems

    Full text link
    In this paper we review several aspects of mesoscopic hybrid superconducting systems. In particular we consider charge and heat transport properties in hybrid superconducting-metal structures and the effect of charging energy in superconducting nanostructures.Comment: 27 pages, 8 figure

    Photonic heat conduction in Josephson-coupled Bardeen-Cooper-Schrieffer superconductors

    Full text link
    We investigate the photon-mediated heat flow between two Josephson-coupled Bardeen-Cooper-Schrieffer (BCS) superconductors. We demonstrate that in standard low temperature experiments involving temperature-biased superconducting quantum interference devices (SQUIDs), this radiative contribution is negligible if compared to the direct galvanic one, but it largely exceeds the heat exchanged between electrons and the lattice phonons. The corresponding thermal conductance is found to be several orders of magnitude smaller, for real experiments setup parameters, than the universal quantum of thermal conductance, kappa_0(T)=pi k_B^2T/6hbar.Comment: 8 pages, 6 figure

    Ultra-low dissipation Josephson transistor

    Full text link
    A superconductor-normal metal-superconductor (SNS) transistor based on superconducting microcoolers is presented. The proposed 4-terminal device consists of a long SNS Josephson junction whose N region is in addition symmetrically connected to superconducting reservoirs through tunnel barriers (I). Biasing the SINIS line allows to modify the quasiparticle temperature in the weak link, thus controlling the Josephson current. We show that, in suitable voltage and temperature regimes, large supercurrent enhancements can be achieved with respect to equilibrium, due to electron ``cooling'' generated by the control voltage. The extremely low power dissipation intrinsic to the structure makes this device relevant for a number of electronic applications.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Nanoscale phase-engineering of thermal transport with a Josephson heat modulator

    Full text link
    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect [1], which manifests itself both in charge [2] and energy transport [3-5]. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics [4-6], and is expected to be a key tool in a number of nanoscience fields, including solid state cooling [7], thermal isolation [8, 9], radiation detection [7], quantum information [10, 11] and thermal logic [12]. Here we show the realization of the first balanced Josephson heat modulator [13] designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters [14], heat pumps [15] and time-dependent electronic engines [16-19].Comment: 6+ pages, 4 color figure

    Rectification of electronic heat current by a hybrid thermal diode

    Full text link
    We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superconducting island. Electronic heat current asymmetry in the structure arises from large mismatch between the thermal properties of these two. We demonstrate experimentally temperature differences exceeding 6060 mK between the forward and reverse thermal bias configurations. Our device offers a remarkably large heat rectification ratio up to 140\sim 140 and allows its prompt implementation in true solid-state thermal nanocircuits and general-purpose electronic applications requiring energy harvesting or thermal management and isolation at the nanoscale.Comment: 8 pages, 6 color figure

    InAs nanowire hot-electron Josephson transistor

    Full text link
    At a superconductor (S)-normal metal (N) junction pairing correlations can "leak-out" into the N region. This proximity effect [1, 2] modifies the system transport properties and can lead to supercurrent flow in SNS junctions [3]. Recent experimental works showed the potential of semiconductor nanowires (NWs) as building blocks for nanometre-scale devices [4-7], also in combination with superconducting elements [8-12]. Here, we demonstrate an InAs NW Josephson transistor where supercurrent is controlled by hot-quasiparticle injection from normal-metal electrodes. Operational principle is based on the modification of NW electron-energy distribution [13-20] that can yield reduced dissipation and high-switching speed. We shall argue that exploitation of this principle with heterostructured semiconductor NWs opens the way to a host of out-of-equilibrium hybrid-nanodevice concepts [7, 21].Comment: 6 pages, 6 color figure

    Superconducting spin filter

    Full text link
    Consider two normal leads coupled to a superconductor; the first lead is biased while the second one and the superconductor are grounded. In general, a finite current I2(V1,0)I_2(V_1,0) is induced in the grounded lead 2; its magnitude depends on the competition between processes of Andreev and normal quasiparticle transmission from the lead 1 to the lead 2. It is known that in the tunneling limit, when normal leads are weakly coupled to the superconductor, I2(V1,0)=0I_2(V_1,0)=0, if V1<Δ|V_1|<\Delta and the system is in the clean limit. In other words, Andreev and normal tunneling processes compensate each-other. We consider the general case: the voltages are below the gap, the system is either dirty or clean. It is shown that I2(V1,0)=0I_2(V_1,0)=0 for general configuration of the normal leads; if the first lead injects spin polarized current then I2=0I_2=0, but spin current in the lead-2 is finite. XISIN structure, where X is a source of the spin polarized current could be applied as a filter separating spin current from charge current. We do an analytical progress calculating I1(V1,V2),I2(V1,V2)I_1(V_1,V_2), I_2(V_1,V_2).Comment: 5 pages, references adde

    Pendulum Mode Thermal Noise in Advanced Interferometers: A comparison of Fused Silica Fibers and Ribbons in the Presence of Surface Loss

    Get PDF
    The use of fused-silica ribbons as suspensions in gravitational wave interferometers can result in significant improvements in pendulum mode thermal noise. Surface loss sets a lower bound to the level of noise achievable, at what level depends on the dissipation depth and other physical parameters. For LIGO II, the high breaking strength of pristine fused silica filaments, the correct choice of ribbon aspect ratio (to minimize thermoelastic damping), and low dissipation depth combined with the other achievable parameters can reduce the pendulum mode thermal noise in a ribbon suspension well below the radiation pressure noise. Despite producing higher levels of pendulum mode thermal noise, cylindrical fiber suspensions provide an acceptable alternative for LIGO II, should unforeseen problems with ribbon suspensions arise.Comment: Submitted to Physics Letters A (Dec. 14, 1999). Resubmitted to Physics Letters A (Apr. 3, 2000) after internal (LSC) review process. PACS - 04.80.Nn, 95.55.Ym, 05.40.C
    corecore