57 research outputs found

    Dirac gap-induced graphene quantum dot in an electrostatic potential

    Full text link
    A spatially modulated Dirac gap in a graphene sheet leads to charge confinement, thus enabling a graphene quantum dot to be formed without the application of external electric and magnetic fields [Appl. Phys. Lett. \textbf{97}, 243106 (2010)]. This can be achieved provided the Dirac gap has a local minimum in which the states become localised. In this work, the physics of such a gap-induced dot is investigated in the continuum limit by solving the Dirac equation. It is shown that gap-induced confined states couple to the states introduced by an electrostatic quantum well potential. Hence the region in which the resulting hybridized states are localised can be tuned with the potential strength, an effect which involves Klein tunneling. The proposed quantum dot may be used to probe quasi-relativistic effects in graphene, while the induced confined states may be useful for graphene-based nanostructures.Comment: 12 pages, 7 figure

    Graphene quantum dots formed by a spatial modulation of the Dirac gap

    Full text link
    An electrostatic quantum dot cannot be formed in monolayer graphene, because of the Klein tunnelling. However, a dot can be formed with the help of a uniform magnetic field. As shown here, a spatial modulation of the Dirac gap leads to confined states with discrete energy levels, thus defining a dot, without applying external electric and magnetic fields. Gap-induced dot states can coexist and couple with states introduced by an electrostatic potential. This property allows the region in which the resulting states are localized to be tuned with the potential.Comment: 3 pages, 3 figure

    Spin detection at elevated temperatures using a driven double quantum dot

    Get PDF
    We consider a double quantum dot in the Pauli blockade regime interacting with a nearby single spin. We show that under microwave irradiation the average electron occupations of the dots exhibit resonances that are sensitive to the state of the nearby spin. The system thus acts as a spin meter for the nearby spin. We investigate the conditions for a non-demolition read-out of the spin and find that the meter works at temperatures comparable to the dot charging energy and sensitivity is mainly limited by the intradot spin relaxation.Comment: 8 pages, 6 figure
    • …
    corecore