110 research outputs found

    Collision-based energetic comparison of rolling and hopping over obstacles.

    Get PDF
    Locomotion of machines and robots operating in rough terrain is strongly influenced by the mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is subject to collisional energy losses, which is governed by mechanics comparable to hopping or walking locomotion. Here we investigate the energetic cost associated with overcoming an obstacle for rolling and hopping locomotion, using a simple mechanics model. The model considers collision-based interactions with the ground and the obstacle, without frictional losses, and we quantify, analyse, and compare the sources of energetic costs for three locomotion strategies. Our results show that the energetic advantages of the locomotion strategies are uniquely defined given the moment of inertia and the Froude number associated with the system. We find that hopping outperforms rolling at larger Froude numbers and vice versa. The analysis is further extended for a comparative study with animals. By applying size and inertial properties through an allometric scaling law of hopping and trotting animals to our models, we found that the conditions at which hopping becomes energetically advantageous to rolling roughly corresponds to animals' preferred gait transition speeds. The energetic collision losses as predicted by the model are largely verified experimentally

    Orbital Angular Momentum in Noncollinear Second Harmonic Generation by off-axis vortex beams

    Full text link
    We experimentally study the behavior of orbital angular momentum (OAM) of light in a noncollinear second harmonic generation (SHG) process. The experiment is performed by using a type I BBO crystal under phase matching conditions with femtosecond pumping fields at 830 nm. Two specular off-axis vortex beams carrying fractional orbital angular momentum at the fundamental frequency (FF) are used. We analyze the behavior of the OAM of the SH signal when the optical vortex of each input field at the FF is displaced from the beam's axis. We obtain different spatial configurations of the SH field, always carrying the same zero angular momentum.Comment: 9 pages, 7 figure

    Diffusion of individual birds in starling flocks

    Get PDF
    Flocking is a paradigmatic example of collective animal behaviour, where decentralized interaction rules give rise to a globally ordered state. In the emergence of order out of self-organization we find similarities between biological systems, as bird flocks, and some physical systems, as ferromagnets. In both cases, the tendency of individuals to align to their neighbours gives rise to a polarized state. There is, however, one crucial difference: the interaction network within an animal group is not necessarily fixed in time, as each individual moves and may change its neighbours. Therefore, the dynamical interaction mechanism in biological and physical system can be quite different, not only due to the gross disparity in the complexity of the individual entities, but also because of the potential role of inter-individual motion. To assess the relevance of this mechanism it is necessary to gain quantitative experimental information about how much individuals move with respect to each other within the group. Here, by using data from field observations on starlings, we study the diffusion properties of individual birds within a flock and investigate the effect of diffusion on the dynamics of the interaction network. We find that birds diffuse faster than Brownian particles (superdiffusion) and in a strongly anisotropic way. We also find that neighbours change in time exclusively as a consequence of diffusion, so that no specific mechanism to keep one's neighbours seems to be enforced. Finally, we study the diffusion properties of birds at the border of the flock. We find that these individuals remain on the border significantly longer than what would be expected on the basis of a purely diffusional model, suggesting that there is a sort barrier a bird must cross to make the transition from border to interior of the flock.Comment: 22 pages, 10 figure

    GReTA - a novel Global and Recursive Tracking Algorithm in three dimensions

    Full text link
    Tracking multiple moving targets allows quantitative measure of the dynamic behavior in systems as diverse as animal groups in biology, turbulence in fluid dynamics and crowd and traffic control. In three dimensions, tracking several targets becomes increasingly hard since optical occlusions are very likely, i.e. two featureless targets frequently overlap for several frames. Occlusions are particularly frequent in biological groups such as bird flocks, fish schools, and insect swarms, a fact that has severely limited collective animal behavior field studies in the past. This paper presents a 3D tracking method that is robust in the case of severe occlusions. To ensure robustness, we adopt a global optimization approach that works on all objects and frames at once. To achieve practicality and scalability, we employ a divide and conquer formulation, thanks to which the computational complexity of the problem is reduced by orders of magnitude. We tested our algorithm with synthetic data, with experimental data of bird flocks and insect swarms and with public benchmark datasets, and show that our system yields high quality trajectories for hundreds of moving targets with severe overlap. The results obtained on very heterogeneous data show the potential applicability of our method to the most diverse experimental situations.Comment: 13 pages, 6 figures, 3 tables. Version 3 was slightly shortened, and new comprative results on the public datasets (thermal infrared videos of flying bats) by Z. Wu and coworkers (2014) were included. in A. Attanasi et al., "GReTA - A Novel Global and Recursive Tracking Algorithm in Three Dimensions", IEEE Trans. Pattern Anal. Mach. Intell., vol.37 (2015
    • …
    corecore